
Math 2102: Worksheet 8

1) Let T ∈ L(V ) prove that

V = nullT ⊕ rangeT ⇔ nullT 2 = nullT.

Solution. Assume that V = nullT ⊕ rangeT . Clearly, nullT ⊆ nullT 2. Let v ∈ nullT 2, then
T (v) ∈ rangeT ∩ nullT , which implies that T (v) = 0, that is v ∈ nullT .

Now assume that nullT 2 = nullT . We first prove that rangeT ∩ nullT = {0}. Let v ∈ rangeT ∩
nullT , then v = T (u) for some u and T (v) = T 2(u) = 0. Thus, u ∈ nullT 2 = nullT , which implies
that v = 0. Now we prove that V = nullT ⊕ rangeT . We have:

nullT ⊕ rangeT ⊆ V,

and the fundamental theorem of linear algebra gives that dim(nullT ⊕ rangeT ) = dimV , thus
nullT ⊕ rangeT = V .

2) Let T ∈ L(V ), λ ∈ F and m ≥ 1 be an integer such that pT is a multiple of (z − λ)m. Prove that

dimnull(T − λ IdV )
m ≥ m.

Solution. Let pT (z) = (z − λ)lq(z), where q is a polynomial such that (z − λ) is not a factor of q.
Let G(λ, T ) ⊆ V be the generalized eigenspace of λ and consider U ⊆ V some subspace such that
G(λ, T )⊕ U = V . We claim that q(T |U ) = 0. Indeed, let u ∈ U be non-zero then (T − λ)l(u) ̸= 0,
since (T − λ)l ◦ q(T )(u) = 0, this implies that q(T )(u) = 0.

We claim that null(T −λ)l−1 ̸= null(T −λ)l. Indeed, if null(T −λ)l ⊆ null(T −λ)l−1 we notice that
(T −λ)l−1(v) = 0 for every v ∈ G(λ, T ), thus r(z) = (z−λ)l−1q(z) would be a minimal polynomial
of T , which is a contradiction with pT being the minimal polynomial. Then we have a chain of
strict inclusions of subspaces

{0} ⊂ nullT ⊂ · · · ⊂ nullT l−1 ⊂ nullT l,

which gives nullT k ≥ k for every k ∈ {1, . . . , l}. In particular, we obtain the desired result.

3) (i) (This exercise does not use any of the new material we are learning, but it might be helpful for
item (ii) below.) Let T ∈ L(V,W ) where V is finite-dimensional, and U ⊆ W be a subspace.
Prove that U ′ := {v ∈ V | T (v) ∈ U} ⊆ V is a subspace and that

dimU ′ = dimnullT + dim(U ∩ rangeT ).

Solution. Let u1, u2 ∈ U ′ and a ∈ F we calculate

T (au1 + u2) = aT (u1) + T (u2) ∈ U,

since T (u1), T (u2) ∈ U and U is a subspace.

Notice that by definition T |U ′ factors through U , i.e. we have a linear map S : U ′ → U such
that

U ′ V

U V

⊂

S T

⊂
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commutes. By applying the fundamental Theorem of Linear Algebra to S we obtain:

dimU ′ = dimnullS + dim rangeS.

We will be done if we prove that rangeS = rangeT ∩ U and nullS = nullT .

Let x ∈ nullT , since T (x) = 0, this gives that x ∈ U ′, then S(x) = T (x) which implies that
x ∈ nullS. Now assume that x ∈ nullS, then S(x) = T (x), which gives that x ∈ nullT .

Let x ∈ rangeS, then there exists y ∈ U ′ such that T (y) = x, thus x ∈ U and x ∈ rangeT .
Let x ∈ rangeT ∩ U , then there exists y ∈ V such that T (y) = x. Since x ∈ U , we ge that
y ∈ U ′, so S(y) = T (y) = x, i.e. x ∈ rangeS.

This finishes the proof.

(ii) Let T ∈ L(V ) and m ≥ 1. Prove that

dimnullTm ≤ m dimnullT.

Solution. We proceed by induction. The case m = 1 is clear.

Assume the result holds for m ≥ 1. Consider U := nullTm and U ′ = {v ∈ V | T (v) ∈
nullTm}. Consider the diagram:

U ′ V

U V

⊂

S Tm

⊂

,

where S is the restriction of Tm to U ′ which factors through U . We claim that U ′ = nullTm+1.
Indeed, let x ∈ U ′, then T (x) ∈ nullTm, so Tm+1 = 0. Conversely, given x ∈ nullTm+1, we
notice that T (x) ∈ nullTm, i.e. x ∈ U ′. Thus, part (i) implies:

dimnullTm+1 = dimnullT+dim(nullTm∩rangeT ) ≤ dimnullT+dimnullTm ≤ (m+1) dimnullT,

where in the last step we used the inductive hypothesis.

4) Assume that T ∈ L(V ) is not nilpotent. Prove that V = nullT dimV−1 ⊕ rangeT dimV−1.

Solution. From Exercise 5) below we see that nullT dimV−1 = nullT dimV , so V = nullT dimV−1 ⊕
rangeT dimV . We claim that nullT dimV−1 ∩ rangeT dimV−1 = {0}. Indeed, let u ∈ nullT dimV−1 ∩
rangeT dimV−1, then u = T dimV−1(v) for some v ∈ V and T dimV−1(u) = 0. Let v = x + y where
x ∈ nullT dimV−1 and y ∈ rangeT dimV . Then u = T dimV−1+dimV (z) for some z ∈ V , which implies
that u ∈ rangeT dimV . Since nullT dimV−1 ∩ rangeT dimV = {0}, we have that u = 0.

From nullT dimV−1 ∩ rangeT dimV−1 = {0} we conclude that V = nullT dimV−1 ⊕ rangeT dimV−1

using the usual argument as in Exercise 1).

5) Assume that T ∈ L(V ) such that nullT dimV−1 ̸= nullT dimV . Prove that T is nilpotent and that
dimnullT k = k for every k ∈ {0, 1, . . . ,dimV }.

Solution. Notice that we have the chain of strict inclusions of subspaces:

{0} ⊂ nullT ⊂ · · ·nullT dimV−1 ⊂ nullT dimV ⊆ V.

This implies that 0 < dimnullT < · · · < dimnullT dimV−1 < dimnullT dimV . For each k ≥ 0
there is a chain of k proper subspaces contained in nullT k, this gives that dimnullT k ≥ k for
every k. Notice that if dimT k > k for some k, this implies that dimT dimV > dimV , which is a
contradiction. Thus, we obtain that dimnullT i = i, which implies that nullT dimV = V since it has
the same dimension as V . In other words, we obtain that T dimV = 0, that is T is nilpotent.
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6) Let T be an operator on F3 whose matrix with respect to the standard basis is−3 9 0
−7 9 6
4 0 6

 .

Can you find a basis BV of F3 such thatM(T,BV ) is upper-triangular with only 0’s on the diagonal?

Solution. No. We can simply compute the determinant of this matrix, which is 432. If we could
find an upper-triangular form with only 0’s in the diagonal the determinant would be 0. Notice
that we can use any matrix representation to compute the determinant, by Exercise 51 (ii) in the
Lecture Notes.

7) Let T ∈ L(V ) with eigenvalue λ and let d be the algebraic multiplicity of λ. Prove that

G(λ, T ) = null(T − λ)d.

Solution. Recall that d := dimG(λ, T ). By Theorem 7 (ii) in the Lecture Notes the restriction
(T − λ)|G(λ,T ) is nilpotent, so G(λ, T ) = null(T − λ)m for some m ≥ 1. By Lemma 59 we know
that m ≤ dimG(λ, T ); this proves the result.

8) Let T : C4 → C4 be given by T (z1, z2, z3, z4) = (0, z1, z2, z3). Find the minimal and characteristic
polynomial of T .

Solution. Notice that T 4 = 0 by T 3((1, 0, 0, 0)) ̸= 0; so pT (z) = z4. Since cT (z) is a multiple of
pT (z) and of dimension 4, we have that cT (z) = z4 as well.

9) Let T : C6 → C6 be given by T (z1, z2, z3, z4, z5, z6) = (0, z1, z2, 0, z4, 0). Find the minimal and
characteristic polynomial of T .

Solution. We notice that T 3 = 0, but T 2((1, 0, 0, 0, 0, 0)) ̸= 0; so T 3 is the minimal polynomial.
Notice that 0 is the only eigenvalue of T . By Corollary 26 (ii) we know that cT (z) = (z−0)d where
d is the algebraic multiplicity of 0. Since G(0, T ) = C6, we have cT (z) = z6.

10) Assume that F = C. Let P ∈ L(V ) be such that P 2 = P . Prove that the characteristic polynomial
of P is zm(z − 1)n, where m = dimnullP and n = dim rangeP .

Solution. First we check that the only eigenvalues of P are 0 and 1. Let λ ∈ F such that P (v) = λv
for some non-zero v ∈ V . Then we have λv = P (v) = P 2(v) = λP (v) = λ2v. Since v is non-zero,
we get λ = λ2. This implies that λ = 0 or λ = 1, as claimed.

By Corollary 26 (ii) we have that cT (z) = zm(z−1)n where m is the algebraic multiplicity of 0 and
n the algebraic multiplicity of 1. Since we are over C we have

V = G(0, P )⊕G(1, P )

which gives dimV = dimG(0, P ) + dimG(1, P ). Finally we claim that nullP = G(0, P ) and that
rangeP = G(1, P ). Indeed, G(0, P ) = nullPM for M big enough, since P = P 2 = · · · = PM we get
G(0, P ) = nullP . Similarly, notice that (P − IdV )

2 = P 2 − 2P + IdV = −(P − IdV ), which implies
that null(P − IdV )

N = null(P − IdV ) for any N ≥ 1. Thus, G(1, P ) = null(P − IdV ). Finally,
notice that rangeP = null(P − IdV ). Indeed, let x ∈ rangeP , then x = P (y) for some y ∈ V so
P (x)− x = P 2(y)− P (y) = 0. If x ∈ null(P − IdV ) then P (x) = x, so x ∈ rangeP .

This finishes the proof.
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11) Let T ∈ L(V ) and λ be an eigenvalue of T . Explain why the following four numbers equal each
other:

(a) the exponent of (z − λ) in the minimal polynomial of T ;

(b) the smallest positive number m such that (T − λ)m|G(λ,T ) = 0;

(c) the smallest positive number m such that null(T − λ)m = null(T − λ)m+1;

(d) the smallest positive number m such that range(T − λ)m = range(T − λ)m+1.

Solution. The equivalence of (a) and (b) is in the solution of 2) above.

The equivalence of (b) and (c) is proved similarly to the solution to Exercise 1. Noticing that
G(λ, T ) = null (T − λ)m|G(λ,T ).

For (c) and (d) it is a similar argument to (b) and (c).

12) Let V = V1 ⊕ · · · ⊕ Vk and T ∈ L(V ) such that each Vi is invariant under T . Let Ti : Vi → Vi be
the operator induced on Vi by T |Vi

the restriction of T to Vi. Prove that

cT =

k∏
i=1

cTi ,

i.e. the characteristic polynomial of T is the product of the characteristic polynomial of each of the
operators Ti : Vi → Vi.

Solution. Let G(λ, T ) be a generalized eigenspace of V . We claim that

G(λ, T ) ∩ Vi = G(λ, Ti).

Indeed, let v ∈ G(λ, Ti), by definition we have that v ∈ Vi. Notice that (T − λ IdV )
kv = (Ti −

λ IdVi)
k(v) for any k ≥ 1. So if (Ti − λ IdVi)

k(v) = 0 for some k then (T − λ IdV )
kv = 0 so

v ∈ G(λ, T ). Conversely, if v ∈ G(λ, T ) ∩ Vi, notice that (T − λ IdV )(v) = (Ti − λ IdVi)(v) ∈ Vi.
Thus, similarly if (T − λ IdV )

kv = 0 for some k ≥ 1, then (Ti − λ IdVi)
k(v) = 0.

Moreover, we claim that
G(λ, T ) = ⊕k

iG(λ, Ti). (1)

Indeed, it is clear that G(λ, Ti) ∩ G(λ, Tj) = {0}. We claim that
∑k

i=1G(λ, Ti) = G(λ, T )1. Let
v ∈ G(λ, T ), then v ∈ Vi for some i ∈ {1, . . . , k}, thus T (v) = Ti(v) ∈ Vi; so v ∈ G(λ, Ti). This
proves that G(λ, T ) ⊆

∑k
i=1G(λ, Ti). The other inclusion is clear from the definition.

Let {λ1, . . . , λm} be the list of all eigenvalues of T , notice that

cTi(z) =

m∏
j=1

(z − λj)
dimG(λj ,Ti),

where if dimG(λj , Ti) = 0, then we only have the factor 1 in the expression above. Thus, we obtain:

k∏
i=1

cTi =

k∏
i=1

m∏
j=1

(z − λj)
dimG(λj ,Ti) =

m∏
j=1

(z − λj)
∑k

i=1 dim(G(λj ,Ti)) =

m∏
j=1

(z − λj)
dimG(λ,T ),

where in the last equation we used the equality dimG(λ, T ) =
∑k

i=1 dim(G(λj , Ti)) obtained from
the direct sum decomposition (1).

1Here we use the notation:
k∑

i=1

G(λ, Ti) = G(λ, T1) + · · ·+G(λ, Tk).
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13) Let T : C2 → C2 be given by T (z, w) = (−w − z, 9w + 5z). Find a Jordan basis of C2 for T .

Solution. The following is what ChatGPT gave me as the answer. It is not complete–
can you check what is correct and finish it?

To find a Jordan basis for the transformation T , we first need to find the eigenvalues and corre-
sponding eigenvectors. Let’s start by finding the eigenvalues.

Let v = (z, w) be an eigenvector of T with eigenvalue λ. Then, we have:

T (v) = λv

T (z, w) = (−w − z, 9w + 5z) = (λz, λw)

Now we have a system of equations:

−w − z = λz 9w + 5z = λw

Let’s solve this system of equations to find the eigenvalues λ. We can rewrite the first equation as:

z = −w − λz

Now substitute this expression for z into the second equation:

9w + 5(−w − λz) = λw

9w − 5w − 5λz = λw

4w = (5λ− 1)z

Now we consider two cases:

1) If z ̸= 0, we can write:

w = 5λ−1
4 z

Plugging this back into the equation for z:

z = −5λ−1
4 z − λz

1 + 5λ−1
4 = λ

Solving for λ, we get:

λ = 1

2) If z = 0, then from the equation for w:

4w = (5λ− 1)0

4w = 0

w = 0

In this case, both z and w are zero, which means the eigenvector is the zero vector, which is not a
valid eigenvector.

So, we have one eigenvalue λ = 1. Now let’s find the corresponding eigenvector:

−w − z = z

w = −2z

So the eigenvector is v = (z,−2z). We can take a basis vector, for example, v1 = (1,−2).

Since we have only one eigenvector and it corresponds to the eigenvalue λ = 1, the Jordan form
of T is a single Jordan block with eigenvalue 1. The Jordan basis is given by the eigenvector
v1 = (1,−2).
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14) Find a basis of P4(R) that is a Jordan basis for D : P4(R) → P4(R) the differentiation operator,
i.e. D(p) := p′.

Solution. Also courtesy of ChatGPT. To find a Jordan basis for the differentiation operator
D acting on the vector space P4(R), we need to find the eigenvalues and corresponding eigenvec-
tors/generalized eigenvectors of D.

Recall that an eigenvector of D is a polynomial p(x) such that:

D(p(x)) = λp(x)

where λ is the eigenvalue. Since D(p(x)) is the derivative of p(x), the equation becomes:

p′(x) = λp(x)

Now we consider different cases for the degree of p(x):

1) If the degree of p(x) is 0, i.e., p(x) = c for some constant c, then p′(x) = 0. In this case, the
eigenvalue is λ = 0 and the corresponding eigenvector is the constant polynomial p0(x) = 1.

2) If the degree of p(x) is greater than 0, then the equation p′(x) = λp(x) has no nontrivial solutions
for λ ̸= 0. This is because the degree of p′(x) is strictly less than the degree of p(x), so they cannot
be proportional unless p′(x) = 0. However, the only polynomials with zero derivatives are constant
polynomials, which we have already considered in case (1).

Thus, the only eigenvalue of D is λ = 0. Now we need to find the generalized eigenvectors for this
eigenvalue. For this, we need to find the polynomials p(x) that satisfy the equation (D−λI)k(p(x)) =
0 for some positive integer k. Since λ = 0, we have:

(D − 0I)k(p(x)) = Dk(p(x)) = 0

Let’s find the smallest k such that Dk(p(x)) = 0 for each possible degree of p(x):

- For degree 0: D1(p(x)) = 0. We already found the eigenvector p0(x) = 1. - For degree 1:
D2(p(x)) = 0. A basis vector is p1(x) = x. - For degree 2: D3(p(x)) = 0. A basis vector is
p2(x) = 1

2x
2. - For degree 3: D4(p(x)) = 0. A basis vector is p3(x) = 1

6x
3. - For degree 4:

D5(p(x)) = 0. A basis vector is p4(x) =
1
24x

4.

Thus, a Jordan basis for D acting on P4(R) is given by the set of polynomials:

{p0(x) = 1, p1(x) = x, p2(x) =
1
2x

2, p3(x) =
1
6x

3, p4(x) =
1
24x

4}.

15) Let T ∈ L(V ) and consider {v1, . . . , vn} a basis of V that is a Jordan basis for T . Describe T 2 in
this basis.

Solution. This is also from ChatGPT. Since {v1, . . . , vn} is a Jordan basis for T , we know
that the matrix representation of T with respect to this basis is in Jordan normal form. Let JT be
the matrix representation of T in this basis, so that JT is a block diagonal matrix where each block
is a Jordan block.

Now, we want to find the matrix representation of T 2 with respect to the same basis. To do this,
we simply compute the square of the matrix JT . Since the Jordan blocks are independent and
diagonal, we can compute the square of each block separately and then combine them into the
matrix representation of T 2.

Let Jλ,k be a Jordan block corresponding to the eigenvalue λ and of size k× k. The matrix form of
this block is:

Jλ,k =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ


6



To find (Jλ,k)
2, we can compute the matrix product:

(Jλ,k)
2 = Jλ,k · Jλ,k

Notice that when multiplying the matrices, the only non-zero entries will be in the diagonal and the
superdiagonal. The diagonal entries are the eigenvalue squared, and the superdiagonal entries are
the product of the eigenvalue and the superdiagonal entry in the original matrix. Thus, we have:
Do you agree with this? I tried the case k=2 and was almost convinced...

(Jλ,k)
2 =


λ2 2λ 0 · · · 0
0 λ2 2λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ2


Now, since JT is a block diagonal matrix with Jordan blocks, its square JT 2 will also be a block
diagonal matrix with the squares of the corresponding Jordan blocks. Therefore, the matrix repre-
sentation of T 2 with respect to the Jordan basis is given by JT 2, which is a block diagonal matrix
with blocks (Jλ,k)

2 as described above.

16) Prove that the trace is the only linear functional τ : L(V ) → F such that τ(ST ) = τ(TS) for all S
and T and τ(IdV ) = dimV .

Solution. A more general result is proved in Lemma 70 in the Lecture Notes. Notice that you can
probably find a simpler proof here since we are only considering S and T operators on the same
vector space.

17) Find S, T ∈ L(P(F)) such that ST − TS = IdP(F).

Solution. Let S : P(F) → P(F) be S(p(x)) = p′(x) and T : P(F) → P(F) be T (p(x)) = xp(x).
Now we compute:

ST (p(x)) = (xp(x))′ = p(x) + xp′(x) and TS(p(x)) = x(p(x))′ = xp′(x).

Thus, (ST − TS)(p(x)) = p(x) for every p(x) ∈ P(F), thus ST − TS = IdP(F).
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