Math 2102: Worksheet 7

1) Let $\{e_1, \ldots, e_n\}$ be a set of vectors in V such that $||v_i|| = 1$ for every $1 \le i \le n$. Suppose that

$$
||v||^2 = \sum_{i=1}^n |\langle v, e_i \rangle| \quad \text{for every } v \in V.
$$

Prove that $\langle v_i, v_j \rangle = 0$ for $i \neq j$, i.e. $\{e_1, \ldots, e_n\}$ is an orthonormal set.

- 2) Let $\{e_1,\ldots,e_n\}$ be an orthonormal basis of V. Consider $\{f_1,\ldots,f_n\}$ a dual basis of $V^{\vee}:=\mathcal{L}(V,\mathbb{F})$ the dual space of V. For each $f_i \in V^{\vee}$, the Riesz representation theorem (Proposition 7), shows that there exist unique $v_i \in V$ such that $f_i(u) = \langle u, v_i \rangle$. Prove that $v_i = e_i$.
- 3) Let $T: V \to W$ be a linear map between inner product spaces.
	- (i) Given orthonormal bases $\{e_1, \ldots, e_n\}$ of V and $\{f_1, \ldots, f_m\}$ of W prove that

$$
\sum_{i=1}^{n} ||Te_i||^2 = \sum_{j=1}^{m} ||T^*f_j||.
$$

- (ii) Prove that T is injective if and only if T^* is surjective.
- (iii) Prove that T is surjective if and only if T^* is injective.
- (iv) dim null $T^* = \dim \text{null } T + \dim W \dim V$.
- (v) dim range $T = \dim \operatorname{range} T$.
- 4) Define an inner product on $\mathcal{P}_2(\mathbb{R})$ by $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$. Let the operator $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ be defined as:

$$
T(ax^2 + bx + c) = bx.
$$

- (i) Show that T is not self-adjoint.
- (ii) Calculate the matrix representing T on the basis $1, x, x^2$. Notice this matrix is equal to its conjugate transpose. Why is this not a contradiction with (i)?
- 5) Let $T \in \mathcal{L}(V)$ be a normal operator.
	- (i) Prove that range $T^k = \text{range } T$ for every $k \geq 1$.
	- (ii) Prove that null $T^k = \text{null } T$ for every $k \geq 1$.
	- (iii) Let $\lambda \in \mathbb{F}$, prove p_T , the minimal polynomial of T, is not a multiple of $(x \lambda)^2$.
- 6) Let $T: V \to V$ be a normal operator on a complex vector space.
	- (i) Prove that T is self-adjoint if and only if all of the eigenvalues of T are real.
	- (ii) Prove that $T = -T^*$ if and only if all of the eigenvalues of T are purely imaginary, i.e. complex numbers with 0 real part.
- 7) Prove or give a counter-example. Every diagonalizable operator $T \in \mathcal{L}(\mathbb{C}^3)$ is normal.
- 8) Let $T \in \mathcal{L}(V)$ be an operator on a finish-dimensional inner product space.
- (i) Assume that $\mathbb{F} = \mathbb{R}$. Prove that T is self-adjoint if and only if (a) $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$ for distinct eigenvalues $\{\lambda_1,\ldots,\lambda_m\}$ and (b) $\langle v_i,v_j\rangle=0$ for $v_i\in E(\lambda_i,T)$ and $E(\lambda_j,T)$ for $i \neq j$.
- (ii) Assume that $\mathbb{F} = \mathbb{C}$. Prove that T is normal if and only if (a) $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$ for distinct eigenvalues $\{\lambda_1,\ldots,\lambda_m\}$ and (b) $\langle v_i,v_j\rangle=0$ for $v_i\in E(\lambda_i,T)$ and $E(\lambda_j,T)$ for $i \neq j$.
- 9) Give an example of $T: V \to V$ on a real inner product space such that there are real numbers $b, c \in \mathbb{R}$ such that

 $b^2 < 4c$ and T is not invertible.

In particular, this shows that we can not relax the assumption that T is self-adjoit in the real spectral theorem.

- 10) Let $T: V \to V$ be a self-adjoint operator and $U \subseteq V$ a subspace invariant under T.
	- (i) Prove that U^{\perp} is invariant under T.
	- (ii) Prove that $T|_{U} \in \mathcal{L}(U)$ is self-adjoint.
	- (iii) Prove that $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint.
- 11) Let $T: V \to V$ be a normal operator and $U \subseteq V$ a subspace invariant under T.
	- (i) Prove that U^{\perp} is invariant under T.
	- (ii) Prove that U is invariant under T^* .
	- (iii) Prove that $(T|_U)^* = (T^*)|_U$.
	- (iv) Prove that $T|_U \in \mathcal{L}(U)$ and $T|_{U^{\perp}}$ are normal operators.
	- (v) (Extra) Use the items above to give, yet another, proof of the complex spectral theorem.
- 12) Let $T \in \mathcal{L}(V)$ be self-adjoint, $\lambda \in \mathbb{F}$ and $\epsilon > 0$. Suppose there exists $v \in V$ such that $||v|| = 1$ and $||Tv - \lambda v|| < \epsilon$. Prove that T has an eigenvalue λ' such that $|\lambda - \lambda'| < \epsilon$.