
Math 2102: Worksheet 6
Solutions

1) Let T : C3 → C3 be given by T (z1, z2, z3) = (2z1 + z2 + 3z3, 2z2 + 2z3, 3z3). Determine if T is
diagonalizable or not.

Solution. Notice that the eigenvalues of T are 2 and 3, since it is in upper-triangular form and
we can simply read them from the diagonal entries. Thus, the minimal polynomial of T is either
a(z) = (z − 2)(z − 3) or b(z) = b(z − 2)2(z3). However, we see that

(T−2 IdV )(T−3 IdV )((0, 1, 0)) = (T−2 IdV )((2,−2, 0)) = (4−2,−4, 0)−2(2,−2, 0) = (−2, 0, 0) ̸= 0.

So the minimal polynomial of T is (z2)
2(z−3) and by Lemma 38 we see that T is not diagonalizable.

2) Suppose that V is finite-dimensional and T ∈ L(V ). Let λ1, . . . , λn denote the distinct nonzero
eigenvalues of T . Prove that

n∑
i=1

dimE(λi, T ) ≤ dim rangeT.

Solution. Let S ⊂ F be the set of all eigenvalues of T . By Lemma 37, we have that∑
s∈S

E(λs, T ) = ⊕s∈SE(λs, T ) ⊆ V.

Thus,
∑

s∈S dimE(λs, T ) = dim(
∑

s∈S E(λs, T )) ≤ dimV , where the first equality follows from
Exercise 20 (i) in the Lecture Notes. Now, we notice that E(0, T ) = nullT , thus we get:

n∑
i=1

dimE(λi, T ) + dimnullT =
∑
s∈S

dimE(λs, T ) ≤ dimV.

So
∑n

i=1 dimE(λi, T ) ≤ dimV −dimnullT = dim rangeT , by the Fundamental Theorem of Linear
Algebra.

3) Consider the inner product on P2(R) given by ⟨p, q⟩ :=
∫ 1
0 pq.

(i) Apply the Gram–Schmidt procedure to {1, x, x2} to produce an orthonormal basis of P2(R).
Solution. To apply the Gram-Schmidt procedure to the set {1, x, x2}, we’ll find the orthogonal
projections and normalize them to obtain an orthonormal basis.

1. Start with the first vector v1 = 1. Normalize it to get the first orthonormal basis vector:

u1 =
v1
∥v1∥

=
1√
⟨1, 1⟩

=
1√∫ 1

0 1 · 1dx
=

1√
1
= 1.

2. Now, find the orthogonal projection of the second vector v2 = x onto u1:

proju1v2 =
⟨x, 1⟩
⟨1, 1⟩

u1 =

(∫ 1

0
x · 1dx

)
1 =

1

2
.

Subtract this projection from v2 to obtain the orthogonalized vector:
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v′2 = v2 − proju1v2 = x− 1

2
.

Normalize v′2 to get the second orthonormal basis vector:

u2 =
v′2
∥v′2∥

=
x− 1

2√∫ 1
0 (x− 1

2)
2dx

=
√
3(2x− 1).

3. Finally, find the orthogonal projection of the third vector v3 = x2 onto u1 and u2:

proju1v3 =

〈
x2, 1

〉
⟨1, 1⟩

u1 =

(∫ 1

0
x2 · 1dx

)
1 =

1

3
,

proju2v3 =

〈
x2, u2

〉
⟨u2, u2⟩

u2 =

∫ 1

0
x2 ·

√
3(2x− 1)dxu2 =

√
3

6
u2.

Subtract these projections from v3 to obtain the orthogonalized vector:

v′3 = v3 − proju1v3 − proju2v3 = x2 − 1

3
− (x− 1

2
) = x2 − x+

1

6
.

Normalize v′3 to get the third orthonormal basis vector:

u3 =
v′3

∥v′3∥
=

x2 − x+ 1
6√∫ 1

0 (x
2 − x+ 1

6)
2dx

=
√
180(x2 − x+

1

6
) =

√
5(6x2 − 6x+ 1).

(ii) Find the matrix representing differentiation on the basis B = {1, x, x2} and then on the basis
obtained in (i). Check that both of these are upper-triangular. This is an example of Lemma
45 in the Lecture Notes.

Solution. On the basis BV the matrix representing D : P2(R) → P2(R) given by D(p(x)) =
p′(x) is:

M(D,BV ) =

0 1 0
0 0 2
0 0 0

 .

On the orthonormal basis B′
V = {1,

√
3(2x− 1),

√
5(6x2 − 6x+ 1)} just obtained we have:

M(D,B′
V ) =

0 2
√
3 0

0 0 2
√
15

0 0 0


(iii) Consider the linear functional:

λ : P2(R) → R

p 7→
∫ 1

0
cos(πx)p(x)dx.

Determine q ∈ P2(R) such that λ(−) = ⟨−, q⟩, which exists by Riesz representation theorem.
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Solution. We apply formula (6.43) from the textbook. Thus,

q = λ(u1)u1 + λ(u2)u2 + λ(u3)u3.

We compute:

λ(u1) =

∫ 1

0
cos(πx)dx = 0, λ(u2) =

∫ 1

0

√
3(2x− 1) cos(πx)dx = −4

√
3

π2

and

λ(u3) =

∫ 1

0
(
√
5(6x2 − 6x+ 1)) cos(πx)dx = 0.

Thus, λ(p) =
〈
p,− 4

π2 (2x− 1)
〉
for every p ∈ P2(R).

4) (Gershgorin Disk Theorem) Let T : V → V be a linear operator and BV = {v1, . . . , vn} be a basis
of V . Let (ai,j)1≤i,j≤n = M(T,BV ) denote the matrix representing T in the basis BV . For each
i ∈ {1, . . . , n} we define the ith Gershgorin disk to be:

Di := {z ∈ F | |z − ai,i| ≤
∑
j ̸=i

|ai,j |}.

(i) Prove that each eigenvalue λ of T belongs to Di for some i ∈ {1, . . . , n}.
Solution. This is Theorem 5.67 in the textbook.

(ii) Assume that
∑

j ̸=i |ai,j | < |ai,i| for every i ∈ {1, . . . , n}. Prove that T is invertible. Can you
give an example of a matrix such that this results allows you to deduce that it is invertible?

Solution. Notice that (i) implies that each eigenvalue λ of T belongs to

|λ| ∈ (ai,i −
∑
j ̸=i

|ai,j |, ai,i +
∑
j ̸=i

|ai,j |).

The condition given guarantees that ai,i −
∑

j ̸=i |ai,j | > 0. Thus, all eigenvalues of T are
non-zero, so T is invertible.

(iii) Let Dcol.
i := {z ∈ F | |z−ai,i| ≤

∑
j ̸=i |aj,i|}, i.e. one change the definition of disks to compare

the value of the diagonal entries with the other values in its column. Check that the same
statement as in (i) holds for Dcol.

i .

Solution. One can simply follow the argument in Theorem 5.67 in the textbook for the trans-
pose matrix.
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