Math 2102: Worksheet 5

- 1) Let $T \in \mathcal{L}(V)$ and assume we are given $U_1, \ldots, U_n \subseteq V$ subspaces which are invariant under T.
 - (i) Prove that $U_1 + \cdots + U_n$ is invariant under T.
 - (ii) Prove that $U_1 \cap \cdots \cap U_n$ is invariant under T.
- 2) Prove or give a counter-example. Let $U \subseteq V$ be a subspace that is invariant under every operator $T \in \mathcal{L}(U)$, then $U = \{0\}$ or U = V.
- 3) (i) Consider $T : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ given by T(p)(x) = p'(x). Find all eigenvalues and eigenvectors of T.
 - (ii) Same as (i) but consider $T: \mathcal{P}_4(\mathbb{R}) \to \mathcal{P}_4(\mathbb{R})$.
- 4) Let $T \in \mathcal{L}(V)$ and consider $S \in \mathcal{L}(V)$ an invertible operator.
 - (i) Prove that T and STS^{-1} have the same eigenvalues.
 - (ii) What is the relation between the eigenvectors of T and those of STS^{-1} ?
- 5) Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$ an operator. Prove that $p_T = p_{T^*}$, where p_T is the minimal polynomial of T and p_{T^*} is the minimal polynomial of $T^* : V^* \to V^*$ the dual of T.
- 6) Let V be a finite-dimensional complex vector space and $T: V \to V$ and operator that only has eigenvalues 5 and 6. Prove that $(T 5 \operatorname{Id}_V)^{\dim V 1} (T 6 \operatorname{Id}_V)^{\dim V 1} = 0$.
- 7) Let V be a vector space of dimension d. Suppose that $T \in \mathcal{L}(V)$ is such that every subspace of dimension $k \in \{1, \ldots, d-1\}$ is invariant under T. Prove that T is a scalar multiple of the identity.
- 8) Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$ an operator and $p \in \mathbb{F}[x]$ its minimal polynomial.
 - (i) Given $\lambda \in \mathbb{F}$ prove that $T \lambda \operatorname{Id}_V$ has minimal polynomial $q(x) = p(x + \lambda)$.
 - (ii) Given $\lambda \in \mathbb{F} \setminus \{0\}$ prove that λT has minimal polynomial $q(x) = \lambda^{\deg p} p\left(\frac{x}{\lambda}\right)$.
 - (iii) Consider the subspace $E := \{q(T) \mid q \in \mathbb{F}[x]\} \subseteq V$. Prove that dim $E = \deg p$.
 - (iv) Prove that $\deg p \leq 1 + \dim \operatorname{range} T$.