
Math 2102: Worksheet 5
Solutions

1) Let T ∈ L(V ) and assume we are given U1, . . . , Un ⊆ V subspaces which are invariant under T .

(i) Prove that U1 + · · ·+ Un is invariant under T .

Solution. Let v ∈ U1 + · · · + Un then there exist ui ∈ Ui for i ∈ {1, . . . , n} such that
v =

∑n
i=1 ui then we have

T (v) = T (

n∑
i=1

ui) =

n∑
i=1

Tui ∈ U1 + · · ·+ Un,

since each Tui ∈ Ui.

(ii) Prove that U1 ∩ · · · ∩ Un is invariant under T .

Solution. Let v ∈ U1 ∩ · · · ∩ Un then v ∈ Ui for all i ∈ {1, . . . , n}, so T (v) ∈ Ui for all
i ∈ {1, . . . , n}. Thus, T (v) ∈ U1 ∩ · · · ∩ Un.

2) Prove or give a counter-example. Let U ⊆ V be a subspace that is invariant under every operator
T ∈ L(U), then U = {0} or U = V .

Solution. To prove this statement, we will assume that U ̸= {0} and show that U = V .

Let u ∈ U be a non-zero vector. Extend this to a basis {u, v2, . . . , vn} of V . Then there are
linear maps Li that send u to vi for i ∈ {2, . . . , n}. If U is invariant under Li this implies that
{u, v2, . . . , vn} ⊂ U , which gives that V = Span {u, v2, . . . , vn} ⊆ U , thus U = V .

3) (i) Consider T : P(R) → P(R) given by T (p)(x) = p′(x). Find all eigenvalues and eigenvectors
of T .

Solution. Let p(x) be a non-zero polynomial such that p′(x) = λp(x) for some λ ∈ F. Notice
that since deg p′(x) < deg(λp(x)), this implies that p′(x) = 0 and λp(x) = 0. Since we want
a non-zero p, this implies that λ = 0 and we have p(x) = a for some a ∈ F, the constant
polynomial as an eigenvector. These are all the eigenvalues and eigenvectors.

(ii) Same as (i) but consider T : P4(R) → P4(R).
Solution. One has the same answer as in (i).

4) Let T ∈ L(V ) and consider S ∈ L(V ) an invertible operator.

(i) Prove that T and STS−1 have the same eigenvalues.

Solution. Let λ be an eigenvalue of T , that is there exists a non-zero vector v ∈ V such that
T (v) = λv. Consider w := S(v) ∈ V , then we have:

STS−1(w) = ST (v) = S(λv) = λw.

Since w is non-zero, otherwise S would not be injective, we obtain that T (v) is an eigenvector
of STS−1 with eigenvalue λ.

Let λ be an eigenvalue of STS−1, that is there exists a non-zero vector v ∈ V such that
STS−1(v) = λv. Consider w := S−1(v) ∈ V then we have

T (w) = TS−1(v) = S−1(λv) = λw.

Thus, w is an eigenvector of T with eigenvalue λ.
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(ii) What is the relation between the eigenvectors of T and those of STS−1?

Solution. The are in bijection. Let ET = {v1, . . . , vn} ⊂ V be the subset of eigenvectors of
T and ESTS−1 = {w1, . . . , wn} be the subset of eigenvectors of STS−1. Then (i) just showed
that:

S : ET
∼−→ ESTS−1

is a bijection.

5) Let V be a finite-dimensional vector space and T ∈ L(V ) an operator. Prove that pT = pT∨ , where
pT is the minimal polynomial of T and pT∨ is the minimal polynomial of T∨ : V ∨ → V ∨ the dual
of T .

Solution. We will repeatedly use that given v ∈ V if α(v) = 0 for all α ∈ V ∨ then v = 0. Similarly,
given β ∈ V ∨ if β(u) = 0 for all u ∈ V then β = 0. This holds because V is finite-dimensional and
can be easily proved by considering the dual basis.

Let pT be the minimal polynomial of T , and pT∨ be the minimal polynomial of T∨. We want to
show that pT = pT∨.

First, let’s show that pT∨(T ) = 0. We need to check that for every v ∈ V we have pT∨(T )(v) = 0.
Notice that for any α ∈ V ∨, we have

α(pT∨(T )(v)) = pT∨(T∨)(α(v)) = pT∨(T∨)(α)(v) = 0.

By the first paragraph we have that pT∨(T )(v) = 0.

Now, let’s show that pT (T
∨) = 0. For any α ∈ V ∨ and v ∈ V we have

(pT (T
∨))(α)(v) = α(pT (T (v))) = α(pT (T )(v)) = 0.

Again by the first paragraph we get that pT (T
∨)(α) = 0 for any α ∈ V ∨.

Since pT∨(T ) = 0 and pT (T
∨) = 0 we obtain that pT∨ divides pT and that pT divides pT∨ as they

are both monic this implies that pT = pT∨.

6) Let V be a finite-dimensional complex vector space and T : V → V and operator that only has
eigenvalues 5 and 6. Prove that (T − 5 IdV )

dimV−1(T − 6 IdV )
dimV−1 = 0.

Solution. Since V is a complex vector space, by Lemma 32 in the Lecture Notes its minimal
polynomial is

pT (z) =

n∏
i=1

(z − λi)

where λi are the eigenvalues of T . Thus, pT (z) = (z − 5)d(z − 6)e for some d, e ≥ 1. Moreover,
deg pT ≤ dimV , by Proposition 5 in the Lecture Notes. Thus, d + e ≤ dimV , which implies that
d, e ≤ dimV − 1. So q(z) = (z − 5)dimV−1(z − 6)dimV−1 is a multiple of pT (z) and by Lemma 33
we have that q(T ) = 0.

7) Let V be a vector space of dimension d. Suppose that T ∈ L(V ) is such that every subspace of
dimension k ∈ {1, . . . , d− 1} is invariant under T . Prove that T is a scalar multiple of the identity.

Solution. Suppose that T ∈ L(V ) is such that every subspace of dimension k ∈ {1, . . . , d − 1} is
invariant under T . We will prove that T is a scalar multiple of the identity by showing that the
action of T on any vector v ∈ V is a scalar multiple of v.

2



Let v ∈ V be an arbitrary non-zero vector. Consider the one-dimensional subspace U = span{v}.
By assumption, U is invariant under T , which means that T (U) ⊆ U . Since U is one-dimensional,
we have T (v) = λvv for some scalar λv.

Now, let w ∈ V be another non-zero vector linearly independent of v. Consider the two-dimensional
subspace W = span{v, w}. By assumption, W is invariant under T , which means that T (W ) ⊆ W .
Since W is two-dimensional, we have T (w) = λww for some scalar λw.

Let x = av + bw be an arbitrary vector in V , where a, b ∈ F. Then,

T (x) = T (av + bw) = aT (v) + bT (w) = a(λvv) + b(λww).

Now, since v and w are linearly independent, the only way for T (x) to be a scalar multiple of x is
if λv = λw = λ for some scalar λ. In this case, we have

T (x) = a(λv) + b(λw) = λ(av + bw) = λx.

Thus, the action of T on any vector x ∈ V is a scalar multiple of x. This proves that T is a scalar
multiple of the identity.

8) Let V be a finite-dimensional vector space and T ∈ L(V ) an operator and p ∈ F[x] its minimal
polynomial.

(i) Given λ ∈ F prove that T − λ IdV has minimal polynomial q(x) = p(x+ λ).

Solution. Let r be the minimal polynomial of T − λ IdV . Notice that q(T − λ IdV ) = p(T −
λ IdV +λ IdV ) = p(T ) = 0. So r divides q. Similarly, we have that s(x) := r(x − λ) satisfies
s(T ) = 0.

Now, we notice that q is also monic and of degree equal to p. Assume that r ̸= q, then there
exists s monic polynomial of degree less than p such that s(T ) = 0. Thus, r = q and we are
done.

(ii) Given λ ∈ F\{0} prove that λT has minimal polynomial q(x) = λdeg pp
(
x
λ

)
.

Solution. Notice that q(λT ) = λdeg pp(T ) = 0. Thus, p divides q. Notice that deg q = deg p,
so q = ap for some constant a ∈ F. We notice that considering the coefficient of xdeg p that
a = 1; thus we are done.

(iii) Consider the subspace E := {q(T ) | q ∈ F[x]} ⊆ V . Prove that dimE = deg p.

Solution. Claim :
E = {q(T ) | q ∈ F[x] and deg q < deg pT }.

Proof: Let q ∈ F[x] with deg q ≥ deg pT . Then by the division algorithm, there exists s, r ∈ F[x]
(where deg r < deg pT ) such that q = spT + r. Then q(T ) = s(T )pT (T ) + r(T ) = r(T ) since
pT is the minimal polynomial of T . So the claim is proved.

Now consider the subset S = {IdV , T, . . . , T deg pT−1} ⊂ E. We claim that S is linearly
independent. Indeed, if that were not the case we could find q(T ) = 0 monic such that
deg q < deg pT , which is a contradiction. Thus, dimE = |S| = deg pT .

(iv) Prove that deg p ≤ 1 + dim rangeT .

Solution. We proceed by induction on dim rangeT . If dim rangeT = 0, then T = 0 and
pT (z) = z so deg pT = 1. Assume the result holds for every T such that dim rangeT < k.

Notice that if rangeT = V , then the result follows from the bound deg p ≤ dimV . So we
assume that T is not surjective. Consider T ′ : rangeT → rangeT the restriction of T to
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rangeT . Let pT ′ be the minimal polynomial of T ′. Since pT (T
′) = 0, pT is a multiple of

pT ′. Now we notice that q(x) := pT ′(x)x is such that q(T ) = 0; so q is a multiple of pT . In
particular, we obtain

deg pT ≤ deg q = deg pT ′ + 1 ≤ dim rangeT ′ + 1 ≤ dim rangeT + 1.
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