Math 2102: Worksheet 5

Solutions

1) Let T' € L(V) and assume we are given Uy, ..., U, C V subspaces which are invariant under 7.

(i) Prove that Uy + - - - + U, is invariant under 7'

Solution. Let v € Uy + --- 4+ U, then there exist u; € U; for i € {1,...,n} such that
v =" u; then we have

Tw) =T u)=> Tu; €U+ -+ Up,
=1 =1

stnce each Tu; € Uj.
(ii) Prove that U; N---N U, is invariant under 7.
Solution. Let v € Uy N---NU, then v € U; for all i € {1,...,n}, so T(v) € U; for all
ie{l,...,n}. Thus, T(v) €Uy N---NU,.
2) Prove or give a counter-example. Let U C V be a subspace that is invariant under every operator
TeL(U),thenU ={0}or U=V.
Solution. To prove this statement, we will assume that U # {0} and show that U =V .

Let w € U be a non-zero vector. Extend this to a basis {u,va,...,v,} of V. Then there are
linear maps L; that send u to v; for i € {2,...,n}. If U is invariant under L; this implies that
{u,va,...,v,} C U, which gives that V = Span {u,ve,...,v,} CU, thusU =V.

3) (i) Comsider T : P(R) — P(R) given by T'(p)(z) = p'(z). Find all eigenvalues and eigenvectors
of T

Solution. Let p(x) be a non-zero polynomial such that p'(x) = Ap(z) for some X € F. Notice
that since degp'(x) < deg(Ap(x)), this implies that p'(x) = 0 and A\p(xz) = 0. Since we want
a non-zero p, this implies that X = 0 and we have p(x) = a for some a € F, the constant
polynomial as an eigenvector. These are all the eigenvalues and eigenvectors.

(ii) Same as (i) but consider T : Ps(R) — Ps(R).

Solution. One has the same answer as in (i).
4) Let T'€ L£(V) and consider S € L(V') an invertible operator.

(i) Prove that T and ST'S™! have the same eigenvalues.

Solution. Let A be an eigenvalue of T, that is there exists a non-zero vector v € V such that
T(v) = Av. Consider w := S(v) € V, then we have:

STS ! (w) = ST (v) = S(\v) = w.

Since w is non-zero, otherwise S would not be injective, we obtain that T'(v) is an eigenvector
of STS~1 with eigenvalue \.

Let X be an eigenvalue of STS™!, that is there exists a non-zero vector v € V such that
STS~Y(v) = M. Consider w:= S~ (v) € V then we have

T(w) =TS (v) = S (W) = \w.

Thus, w is an eigenvector of T with eigenvalue .



(ii) What is the relation between the eigenvectors of T and those of STS~1?

Solution. The are in bijection. Let Ep = {v1,...,v,} C V be the subset of eigenvectors of
T and Egpg—1 = {w1,...,w,} be the subset of eigenvectors of STS™Y. Then (i) just showed
that:

S . ET ;> ESTS*l

s a bijection.

5) Let V be a finite-dimensional vector space and 1" € L£(V') an operator. Prove that pr = ppv, where

pr is the minimal polynomial of 7" and ppv is the minimal polynomial of 7V : VV — V'V the dual
of T.

Solution. We will repeatedly use that givenv € V if a(v) = 0 for alla € VV then v = 0. Similarly,
given 3 € VY if B(u) =0 for allu € V then B = 0. This holds because V is finite-dimensional and
can be easily proved by considering the dual basis.

Let pr be the minimal polynomial of T, and ppv be the minimal polynomial of TV. We want to
show that pr = ppv.

First, let’s show that ppv(T) = 0. We need to check that for every v € V. we have ppv(T)(v) = 0.
Notice that for any o € V'V, we have

a(prv (T)(v)) = prv(T7)(a(v)) = prv (T7)(@)(v) = 0.

By the first paragraph we have that ppv (T)(v) = 0.
Now, let’s show that pp(TV) = 0. For any a € V¥ and v € V we have

(pr(TY) () (v) = alpr(T(v))) = a(pr(T)(v)) = 0.

Again by the first paragraph we get that pr(TV)(a) =0 for any a € V.

Since prv(T) = 0 and pr(TV) = 0 we obtain that ppv divides pr and that pr divides prv as they
are both monic this implies that pr = ppv.

Let V be a finite-dimensional complex vector space and T : V' — V and operator that only has
eigenvalues 5 and 6. Prove that (T — 5Idy )™V =1(T — 61dy)4™ V-1 = 0.

Solution. Since V' is a complexr vector space, by Lemma 32 in the Lecture Notes its minimal
polynomial is

where \; are the eigenvalues of T. Thus, pr(z) = (z — 5)%(z — 6)¢ for some d,e > 1. Moreover,
degpr < dimV, by Proposition 5 in the Lecture Notes. Thus, d + e < dim V', which implies that
d,e <dimV — 1. So q(2) = (z — 5)ImV=1(z — 6)ImV=1 js 4 multiple of pr(z) and by Lemma 33
we have that q(T) = 0.

Let V be a vector space of dimension d. Suppose that T' € L(V') is such that every subspace of
dimension k € {1,...,d — 1} is invariant under 7". Prove that T is a scalar multiple of the identity.

Solution. Suppose that T € L(V) is such that every subspace of dimension k € {1,...,d — 1} is
invariant under T'. We will prove that T is a scalar multiple of the identity by showing that the
action of T on any vector v € V is a scalar multiple of v.



Let v € V be an arbitrary non-zero vector. Consider the one-dimensional subspace U = span{v}.
By assumption, U is invariant under T, which means that T(U) C U. Since U is one-dimensional,
we have T'(v) = Ayv for some scalar \,.

Now, let w € V be another non-zero vector linearly independent of v. Consider the two-dimensional
subspace W = span{v,w}. By assumption, W is invariant under T, which means that T(W) C W.
Since W' is two-dimensional, we have T'(w) = Ayw for some scalar \,.

Let x = av + bw be an arbitrary vector in V, where a,b € F. Then,
T(x) =T (av + bw) = aT'(v) + bT (w) = a(Ayv) + b(Ayw).

Now, since v and w are linearly independent, the only way for T(x) to be a scalar multiple of x is
if Ay = Aw = X for some scalar . In this case, we have

T(z) = a(Av) + b(Aw) = A(av + bw) = Ax.

Thus, the action of T on any vector x € V is a scalar multiple of x. This proves that T is a scalar
multiple of the identity.

Let V be a finite-dimensional vector space and 7' € L£(V') an operator and p € F[z] its minimal
polynomial.

(i) Given A € F prove that T'— A Idy has minimal polynomial g(x) = p(x + ).
Solution. Let r be the minimal polynomial of T'— A1dy . Notice that q(T — A1dy) = p(T —
AMdy +A1dy) = p(T) = 0. So r divides q. Similarly, we have that s(x) := r(x — \) satisfies
s(T) = 0.
Now, we notice that q is also monic and of degree equal to p. Assume that r # q, then there

exists s monic polynomial of degree less than p such that s(T) = 0. Thus, r = q and we are
done.

(ii) Given A € F\{0} prove that AT has minimal polynomial g(z) = APp (%).

Solution. Notice that ¢(A\T) = )\degpp(T) = 0. Thus, p divides q. Notice that degq = degp,
so q = ap for some constant a € F. We notice that considering the coefficient of x9°€P that
a =1, thus we are done.

(iii) Consider the subspace E := {q(T) | ¢ € F[z]} C V. Prove that dim E = degp.

Solution. Claim :
E={q(T) | q € Flz] and deg q < degpr}.

Proof: Let q € Flz] with deg q > deg pr. Then by the division algorithm, there exists s,r € F[z]
(where deg r < deg pr) such that ¢ = spr +r. Then q(T) = s(T)pr(T) + r(T) = r(T) since
pr is the minimal polynomial of T'. So the claim is proved.

Now consider the subset S = {Idy,T,...,T98Pr=1} c E. We claim that S is linearly
independent. Indeed, if that were not the case we could find q(T') = 0 monic such that
deg q < deg pr, which is a contradiction. Thus, dim E = |S| = deg pr.

(iv) Prove that degp <1+ dimrangeT.

Solution. We proceed by induction on dimrangeT. If dimrangeT = 0, then T = 0 and
pr(z) = z so degpr = 1. Assume the result holds for every T' such that dimrangeT < k.

Notice that if rangeT = V', then the result follows from the bound degp < dimV. So we
assume that T is not surjective. Consider T' : rangeT — rangeT the restriction of T to



range 1. Let pr be the minimal polynomial of T'. Since pr(T') = 0, pr is a multiple of
pr. Now we notice that q(x) := pp(x)x is such that q(T) = 0; so q is a multiple of pr. In
particular, we obtain

degpr < degq = degpr + 1 < dimrangeT’ + 1 < dimrangeT + 1.



