Math 2102: Worksheet 4

- 1) Suppose that x, y are vectors in a vector space V and let $U, W \subseteq V$ be two subspaces. Assume that U + x = W + y, prove that U = W.
- 2) Let $U \subseteq V$ be a subspace and assume that V/U is finite-dimensional. Prove that $V \simeq U \times V/U$.
- 3) Let $T \in \mathcal{L}(V, W)$ and consider $U \subseteq V$. Let $\pi : V \to V/U$ denote the quotient map. Prove that there exists $S \in \mathcal{L}(V/U, W)$ such that $S \circ \pi = T$ if and only if $U \subseteq \text{null } T$.
- 4) Let $\alpha, \beta \in V^*$. Prove that null $\alpha \subseteq$ null β if and only if $\beta = c\alpha$ for some $c \in \mathbb{F}$.
- 5) Let W be a finite-dimensional vector space and consider $T \in \mathcal{L}(V, W)$.
 - (i) Prove that T = 0 if and only if $T^* = 0$.
 - (ii) Is the same true if W is not finite-dimensional?
- 6) Let V be a finite-dimensional vector space. Consider $\lambda_1, \ldots, \lambda_m \in V^*$ a collection of linearly independent (linear) functionals. Prove that

$$\dim((\operatorname{null} \lambda_1) \cap \cdots \cap (\operatorname{null} \lambda_m)) = \dim V - m$$

- 7) Let $m \leq n$ be two positive integers. Consider $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$. Prove that there exists a polynomial $p \in \mathbb{F}[x]$ of degree n such that $p(\alpha_i) = 0$ for $1 \leq i \leq m$ and p has no other zeroes.
- 8) Let $m \ge 1$ be an integer and consider $z_1, \ldots, z_m \in \mathbb{F}$ distinct elements and $w_1, \ldots, w_m \in \mathbb{F}$ (not necessarily distinct). Prove that there exists a unique polynomial $p \in \mathcal{P}_m(\mathbb{F})$ such that $p(z_i) = w_i$ for $1 \le i \le m$.
- 9) Let $p \in \mathbb{C}[x]$ be a polynomial with complex coefficients. Define $q : \mathbb{C} \to \mathbb{C}$ by $q(z) = p(z)\overline{p(\overline{z})}$, where $\overline{p(\overline{z})}$ is the polynomial obtained by conjugating all of the complex coefficients of $p(\overline{z})$. Prove that q is a polynomial with real coefficients.
- 10) Let $p \in \mathbb{F}[x]$ be a non-zero polynomial. Consider $U := \{pq \mid q \in \mathbb{F}[x]\} \subseteq \mathbb{F}[x]$.
 - (i) Show that dim $\mathbb{F}[x]/U = \deg p$.
 - (ii) Find a basis of $\mathbb{F}[x]/U$.