Math 2102: Worksheet 4 Solutions

1) Suppose that x, y are vectors in a vector space V and let $U, W \subseteq V$ be two subspaces. Assume that U + x = W + y, prove that U = W.

Solution. *First we notice that* $x - y \in U \cap W$ *. Indeed, we have*

$$0 + (y - x) \in W \implies x - y \in W,$$

since $0 \in U$ and similarly

$$0 + (x - y) \in u \implies x - y \in U.$$

Now, let $u \in U$ we have $u + (y - x) \in W$, since $x - y \in W$ we have $u + (y - x) + (x - y) \in W$, i.e. $u \in W$. Similarly, we prove that $W \subseteq U$.

2) Let $U \subseteq V$ be a subspace and assume that V/U is finite-dimensional. Prove that $V \simeq U \times V/U$.

Solution. Let $\{v_1 + U, \ldots, v_n + U\}$ be a basis of V/U. Then $\{v_1, \ldots, v_n\}$ is a linearly independent subset of V. Consider the map $\varphi : U \times V/U \to V$ defined as:

$$\varphi(u,x) := u + \sum_{i=1}^{n} a_i v_i,$$

where $x = \sum_{i=1}^{n} a_i(v_i + U)$ is the expansion of x in V/U. We claim that φ is an isomorphism. First we prove that φ is linear. Let $(u, x), (u', x') \in U \times V/U$ and $b \in \mathbb{F}$ we have:

$$\varphi(u + bu', x + bx') = u + au' + \sum_{i=1}^{n} (a_i + ba'_i)v_i$$
$$= u + \sum_{i=1}^{n} a_i v_i + au' \sum_{i=1}^{n} ba'_i v_i$$
$$= \varphi(u, x) + b\varphi(u', x'),$$

where $x' = \sum_{i=1}^{n} a'_i(v_i + U)$ and x is written as before.

Now we check that φ is injective. Assume that

$$u + \sum_{i=1}^{n} a_i v_i = u' + u + \sum_{i=1}^{n} a'_i v_i$$

for some a_i, a'_i 's. Since $v_i \neq U$ by definition, otherwise $v_i + U = 0 + U$, so $v_i + U$ would not be part of a basis of V/U, we have that u - u' and $\sum_{i=1}^{n} (a_i - a'_i)v_i = 0$, which imply that $a_i = a'_i$ for all $i \in \{1, \ldots, n\}$.

Finally, we check that φ is surjective. Let $v \in V$, then consider $\pi(v) \in V/U$ we know that $\pi(v) = \sum_{i=1}^{n} a_i(v_i + U)$, i.e.

$$v - \sum_{i=1}^{n} a_i v_i \in U \implies v = u + \sum_{i=1}^{n} a_i v_i.$$

Thus, $\varphi((u, \sum_{i=1}^{n} a_i(v_i + U))) = v$, and we are done.

3) Let $T \in \mathcal{L}(V, W)$ and consider $U \subseteq V$. Let $\pi : V \to V/U$ denote the quotient map. Prove that there exists $S \in \mathcal{L}(V/U, W)$ such that $S \circ \pi = T$ if and only if $U \subseteq \text{null } T$.

Solution. Assume that such an S exists. Let $u \in U$, then $T(u) = S \circ \pi(u) = S(0) = 0$, thus $u \in \text{null } T$.

Now assume that $U \subseteq \text{null } T$. We define: $S: V/U \to W$ by

$$S(v+U) := T(v)$$

We need to check that this is well-defined. Let v + U = v' + U in V/U, then

$$S(v + U) = T(v) = T(v') - T(v' - v) = T(v'),$$

since $v' - v \in U$ so T(v' - v) = 0. Finally, we notice that $T(v) = S(v + U) = S \circ \pi(v)$, since $\pi(v) = v + U$.

4) Let $\alpha, \beta \in V^{\vee}$. Prove that null $\alpha \subseteq$ null β if and only if $\beta = c\alpha$ for some $c \in \mathbb{F}$.

Solution. First assume that $\beta = c\alpha$ for some $c \in \mathbb{F}$. Then if $\alpha(v) = 0$ then $\beta(v) = 0$, so we get null $\alpha \subseteq$ null β .

Now assume that null $\alpha \subseteq$ null β .

If $\alpha = 0$, then $V \subseteq \text{null }\beta$, which implies that $\text{null }\beta = V$, i.e. $\beta = 0$ and we are done.

So we assume that $\alpha \neq 0$. Let $v \in V$ such that $\alpha(v) \neq 0$. For every $u \in V$ notice that $\alpha(v)u - \alpha(u)v \in \text{null } \alpha$, i.e. $\alpha(\alpha(v)u - \alpha(u)v) = 0$, so $\alpha(v)u - \alpha(u)v \in \text{null } \beta$, which gives:

 $\beta(\alpha(v)u - \alpha(u)v) = 0 \quad \Rightarrow \quad \alpha(v)\beta(u) = \alpha(u)\beta(v),$

that is $\beta(u) = \frac{\beta(v)}{\alpha(v)}\alpha(u)$ for every $u \in V$, i.e. $\beta = \frac{\beta(v)}{\alpha(v)}\alpha$. This finishes the proof.

- 5) Let W be a finite-dimensional vector space and consider $T \in \mathcal{L}(V, W)$.
 - (i) Prove that T = 0 if and only if $T^{\vee} = 0$.

Solution. Assume that T = 0, consider $\varphi \in V^{\vee}$. Then we have

$$T^{\vee}(\varphi)(v) = \varphi(T(v)) = \varphi(0).$$

So $T^{\vee}(\varphi) = 0$. Since φ was arbitrary we have that T^{\vee} . Conversely, assume that $T^{\vee} = 0$. Let $v \in V$, then for every $\varphi \in V^{\vee}$ we have

$$T^{\vee}(\varphi)(v) = \varphi(T(v)) = 0.$$

Since W is finite-dimension consider a basis $\{e_1, \ldots, e_n\}$ of W which gives a basis $\{e_1^{\vee}, \ldots, e_n^{\vee}\}$ of W^{\vee} . Then we have $e_i^{\vee}(T(v)) = 0$, i.e. if $T(v) = \sum_{i=1}^n a_i e_i$ we have that $a_i = 0$ for all $i \in \{1, \ldots, n\}$. Since this happens for an arbitrary $v \in V$ we obtain that T(v) = 0.

(ii) (Extra) Is the same true if W is not finite-dimensional?

Solution. This is not true in the infinite-dimensional case.

6) Let V be a finite-dimensional vector space. Consider $\lambda_1, \ldots, \lambda_m \in V^{\vee}$ a collection of linearly independent (linear) functionals. Prove that

$$\dim((\operatorname{null} \lambda_1) \cap \cdots \cap (\operatorname{null} \lambda_m)) = \dim V - m.$$

Solution. We proceed by induction on m.

For m = 1 notice that $\{\lambda\}$ is linear independent implies that $\lambda \in V^{\vee}$ is non-zero. By the fundamental theorem of Linear Algebra we have

$$\dim V = \dim \operatorname{null} \lambda + \dim \operatorname{range} \lambda,$$

since $\lambda \neq 0$, there exists $v \in V$ such that $\lambda(v) \neq 0$ and we get that range $\lambda = \mathbb{F}$, so dim range $\lambda = 1$. Thus dim null $\lambda = \dim V - 1$.

Let $V' := \operatorname{null} \lambda_1$ and $V' \oplus U = V$ be a decomposition of V. Let $\lambda'_i := \lambda_i|_{V'}$ for $i = 2, \ldots, m$. We claim that $\{\lambda'_i\}_{2 \leq i \leq n}$ is a linearly independent set. Assume by contradiction that there exists a non-trivial linear combination $\sum_{i=2}^{m} a_i \lambda'_i$. Then let $u \in U$ be any non-zero vector, in particular we have $\lambda_1(u) \neq 0$. We claim that

$$\frac{-\sum_{i=2}^{m} a_i \lambda_i(u)}{\lambda_1(u)} \lambda_1 + \sum_{i=2}^{m} a_i \lambda_i = 0$$
(1)

is a non-trivial linear combination of $\{\lambda_1, \ldots, \lambda_m\}$. Indeed, we just need to check that (1) applied to any vector $v \in V$ vanishes. For $v \in V'$ this is clear by the choice of a_i . For any $w \in U$, since $\dim U = 1$ we have w = bu for some $b \in \mathbb{F}$ and we obtain:

$$\frac{-\sum_{i=2}^{m} a_i \lambda_i(u)}{\lambda_1(u)} \lambda_1(bu) + \sum_{i=2}^{m} a_i \lambda_i(bu) = 0.$$

Now, by the inductive hypothesis we have that

$$\dim((\operatorname{null} \lambda'_2) \cap \cdots (\operatorname{null} \lambda'_m)) = \dim V' - (m-1).$$

Since $(\operatorname{null} \lambda_1) \cap \cdots \cap (\operatorname{null} \lambda_m) = V' \cap (\operatorname{null} \lambda'_2) \cap \cdots (\operatorname{null} \lambda'_m) = (\operatorname{null} \lambda'_2) \cap \cdots (\operatorname{null} \lambda'_m)$ we get:

 $\dim(\operatorname{null} \lambda_1) \cap \cdots \cap (\operatorname{null} \lambda_m) = \dim V' - (m-1) = \dim V - m,$

where the last equality follows from the m = 1 case.

7) Let $m \leq n$ be two positive integers. Consider $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$. Prove that there exists a polynomial $p \in \mathbb{F}[x]$ of degree n such that $p(\alpha_i) = 0$ for $1 \leq i \leq m$ and p has no other zeroes.

Solution. The polynomial $p(x) := (x - \alpha_1)^{n-m+1} \prod_{i=2}^m (x - \alpha_i)$ does the trick.

8) Let $m \ge 1$ be an integer and consider $z_1, \ldots, z_m \in \mathbb{F}$ distinct elements and $w_1, \ldots, w_m \in \mathbb{F}$ (not necessarily distinct). Prove that there exists a unique polynomial $p \in \mathcal{P}_m(\mathbb{F})$ such that $p(z_i) = w_i$ for $1 \le i \le m$.

Solution. Consider $p(z) := \sum_{j=1}^{m} \prod_{i \neq j} (z - z_i) \frac{w_j}{\prod_{i \neq j} (z_j - z_i)}$. This does the trick.

9) Let $p \in \mathbb{C}[x]$ be a polynomial with complex coefficients. Define $q : \mathbb{C} \to \mathbb{C}$ by $q(z) = p(z)p(\bar{z})$, where $\overline{p(\bar{z})}$ is the polynomial obtained by conjugating all of the complex coefficients of $p(\bar{z})$. Prove that q is a polynomial with real coefficients. **Solution.** Let $p(z) = \sum_{i=0}^{n} a_i z^i$ with $a_i \in \mathbb{C}$, then we have $\overline{p(\overline{z})} = \sum_{i=0}^{n} \overline{a_i} z^i$. Thus, we calculate:

$$p(z)\overline{p(\overline{z})} = (\sum_{i=0}^{n} a_i z^i) (\sum_{i=0}^{n} \overline{a_i} z^i)$$
$$= \sum_{i=0}^{2n} (\sum_{j=0}^{i} a_j \overline{a_{i-j}}) z^i.$$

Thus, it is enough to check that for every $i \ge 0$ we have $\sum_{j=0}^{i} a_j \overline{a_{i-j}} \in \mathbb{R}$. Notice that for i = 2k for some $k \ge 0$ we have

$$\sum_{j=0}^{i} a_j \overline{a_{i-j}} = |a_k|^2 + \sum_{j=0}^{k-1} (a_j \overline{a_{2k-j}} + \overline{a_j \overline{a_{2k-j}}}),$$
(2)

whereas for i = 2k + 1 for some $k \ge 0$ we have

$$\sum_{j=0}^{i} a_j \overline{a_{i-j}} = \sum_{j=0}^{k} a_j (\overline{a_{2k+1-j}} + \overline{a_j \overline{a_{2k+1-j}}}).$$
(3)

Now, it is clear that every term in (2) and (3) is a real number.

10) Let $p \in \mathbb{F}[x]$ be a non-zero polynomial. Consider $U := \{pq \mid q \in \mathbb{F}[x]\} \subseteq \mathbb{F}[x]$.

(i) Show that $\dim \mathbb{F}[x]/U = \deg p$.

Solution. By (ii) above we have a basis of $\mathbb{F}[x]/U$ with d elements, so dim $\mathbb{F}[x]/U = d$.

(ii) Find a basis of $\mathbb{F}[x]/U$.

Solution. Let $d = \deg p$, we claim that $\{1 + U, x + U, \dots, x^{d-1} + U\}$ is a basis of $\mathbb{F}[x]/U$. Indeed, it is clear that this set is linearly independent, otherwise we get

$$x^i - x^j \in U \implies x^i - x^j = pq$$

for some q, which gives a contradiction since $\deg x^i - x^j \leq \max\{i, j\} \leq d-1$, where $\deg pq \geq d$. Now let $f \in \mathbb{F}[x]/U$, then f = g + U, where $g \in \mathbb{F}[x]$. By Lemma 29 in the Lecture Notes, there exist $a, b \in \mathbb{F}[x]$ such that

$$g = ap + b$$
 and $\deg b < d$.

Thus, we have g + U = b + U. Since deg $b < \deg p$, we can find $\beta_i \in \mathbb{F}$ for $i \in \{0, \dots, d-1\}$ such that $b = \sum_{i=0}^{d-1} \beta_i x^i$; thus

$$g + U = \sum_{i=0}^{d-1} \beta_i (x^i + U)$$