
Math 2102: Worksheet 4
Solutions

1) Suppose that x, y are vectors in a vector space V and let U,W ⊆ V be two subspaces. Assume
that U + x = W + y, prove that U = W .

Solution. First we notice that x− y ∈ U ∩W . Indeed, we have

0 + (y − x) ∈ W ⇒ x− y ∈ W,

since 0 ∈ U and similarly
0 + (x− y) ∈ u ⇒ x− y ∈ U.

Now, let u ∈ U we have u+ (y− x) ∈ W , since x− y ∈ W we have u+ (y− x) + (x− y) ∈ W , i.e.
u ∈ W . Similarly, we prove that W ⊆ U .

2) Let U ⊆ V be a subspace and assume that V/U is finite-dimensional. Prove that V ≃ U × V/U .

Solution. Let {v1 +U, . . . , vn +U} be a basis of V/U . Then {v1, . . . , vn} is a linearly independent
subset of V . Consider the map φ : U × V/U → V defined as:

φ(u, x) := u+

n∑
i=1

aivi,

where x =
∑n

i=1 ai(vi + U) is the expansion of x in V/U . We claim that φ is an isomorphism.

First we prove that φ is linear. Let (u, x), (u′, x′) ∈ U × V/U and b ∈ F we have:

φ(u+ bu′, x+ bx′) = u+ au′ +

n∑
i=1

(ai + ba′i)vi

= u+

n∑
i=1

aivi + au′
n∑

i=1

ba′ivi

= φ(u, x) + bφ(u′, x′),

where x′ =
∑n

i=1 a
′
i(vi + U) and x is written as before.

Now we check that φ is injective. Assume that

u+
n∑

i=1

aivi = u′ + u+
n∑

i=1

a′ivi

for some ai, a
′
i’s. Since vi ̸= U by definition, otherwise vi+U = 0+U , so vi+U would not be part

of a basis of V/U , we have that u − u′ and
∑n

i=1(ai − a′i)vi = 0, which imply that ai = a′i for all
i ∈ {1, . . . , n}.
Finally, we check that φ is surjective. Let v ∈ V , then consider π(v) ∈ V/U we know that
π(v) =

∑n
i=1 ai(vi + U), i.e.

v −
n∑

i=1

aivi ∈ U ⇒ v = u+
n∑

i=1

aivi.

Thus, φ((u,
∑n

i=1 ai(vi + U))) = v, and we are done.
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3) Let T ∈ L(V,W ) and consider U ⊆ V . Let π : V → V/U denote the quotient map. Prove that
there exists S ∈ L(V/U,W ) such that S ◦ π = T if and only if U ⊆ nullT .

Solution. Assume that such an S exists. Let u ∈ U , then T (u) = S ◦ π(u) = S(0) = 0, thus
u ∈ nullT .

Now assume that U ⊆ nullT . We define: S : V/U → W by

S(v + U) := T (v).

We need to check that this is well-defined. Let v + U = v′ + U in V/U , then

S(v + U) = T (v) = T (v′)− T (v′ − v) = T (v′),

since v′ − v ∈ U so T (v′ − v) = 0. Finally, we notice that T (v) = S(v + U) = S ◦ π(v), since
π(v) = v + U .

4) Let α, β ∈ V ∨. Prove that nullα ⊆ nullβ if and only if β = cα for some c ∈ F.

Solution. First assume that β = cα for some c ∈ F. Then if α(v) = 0 then β(v) = 0, so we get
nullα ⊆ nullβ.

Now assume that nullα ⊆ nullβ.

If α = 0, then V ⊆ nullβ, which implies that nullβ = V , i.e. β = 0 and we are done.

So we assume that α ̸= 0. Let v ∈ V such that α(v) ̸= 0. For every u ∈ V notice that α(v)u −
α(u)v ∈ nullα, i.e. α(α(v)u− α(u)v) = 0, so α(v)u− α(u)v ∈ nullβ, which gives:

β(α(v)u− α(u)v) = 0 ⇒ α(v)β(u) = α(u)β(v),

that is β(u) = β(v)
α(v)α(u) for every u ∈ V , i.e. β = β(v)

α(v)α. This finishes the proof.

5) Let W be a finite-dimensional vector space and consider T ∈ L(V,W ).

(i) Prove that T = 0 if and only if T∨ = 0.

Solution. Assume that T = 0, consider φ ∈ V ∨. Then we have

T∨(φ)(v) = φ(T (v)) = φ(0).

So T∨(φ) = 0. Since φ was arbitrary we have that T∨.

Conversely, assume that T∨ = 0. Let v ∈ V , then for every φ ∈ V ∨ we have

T∨(φ)(v) = φ(T (v)) = 0.

Since W is finite-dimension consider a basis {e1, . . . , en} of W which gives a basis {e∨1 , . . . , e∨n}
of W∨. Then we have e∨i (T (v)) = 0, i.e. if T (v) =

∑n
i=1 aiei we have that ai = 0 for all

i ∈ {1, . . . , n}. Since this happens for an arbitrary v ∈ V we obtain that T (v) = 0.

(ii) (Extra) Is the same true if W is not finite-dimensional?

Solution. This is not true in the infinite-dimensional case.

6) Let V be a finite-dimensional vector space. Consider λ1, . . . , λm ∈ V ∨ a collection of linearly
independent (linear) functionals. Prove that

dim((nullλ1) ∩ · · · ∩ (nullλm)) = dimV −m.
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Solution. We proceed by induction on m.

For m = 1 notice that {λ} is linear independent implies that λ ∈ V ∨ is non-zero. By the funda-
mental theorem of Linear Algebra we have

dimV = dimnullλ+ dim rangeλ,

since λ ̸= 0, there exists v ∈ V such that λ(v) ̸= 0 and we get that rangeλ = F, so dim rangeλ = 1.
Thus dimnullλ = dimV − 1.

Let V ′ := nullλ1 and V ′ ⊕ U = V be a decomposition of V . Let λ′
i := λi|V ′ for i = 2, . . . ,m.

We claim that {λ′
i}2≤i≤n is a linearly independent set. Assume by contradiction that there exists a

non-trivial linear combination
∑m

i=2 aiλ
′
i. Then let u ∈ U be any non-zero vector, in particular we

have λ1(u) ̸= 0. We claim that

−
∑m

i=2 aiλi(u)

λ1(u)
λ1 +

m∑
i=2

aiλi = 0 (1)

is a non-trivial linear combination of {λ1, . . . , λm}. Indeed, we just need to check that (1) applied
to any vector v ∈ V vanishes. For v ∈ V ′ this is clear by the choice of ai. For any w ∈ U , since
dimU = 1 we have w = bu for some b ∈ F and we obtain:

−
∑m

i=2 aiλi(u)

λ1(u)
λ1(bu) +

m∑
i=2

aiλi(bu) = 0.

Now, by the inductive hypothesis we have that

dim((nullλ′
2) ∩ · · · (nullλ′

m)) = dimV ′ − (m− 1).

Since (nullλ1) ∩ · · · ∩ (nullλm) = V ′ ∩ (nullλ′
2) ∩ · · · (nullλ′

m) = (nullλ′
2) ∩ · · · (nullλ′

m) we get:

dim(nullλ1) ∩ · · · ∩ (nullλm) = dimV ′ − (m− 1) = dimV −m,

where the last equality follows from the m = 1 case.

7) Let m ≤ n be two positive integers. Consider α1, . . . , αm ∈ F. Prove that there exists a polynomial
p ∈ F[x] of degree n such that p(αi) = 0 for 1 ≤ i ≤ m and p has no other zeroes.

Solution. The polynomial p(x) := (x− α1)
n−m+1

∏m
i=2(x− αi) does the trick.

8) Let m ≥ 1 be an integer and consider z1, . . . , zm ∈ F distinct elements and w1, . . . , wm ∈ F (not
necessarily distinct). Prove that there exists a unique polynomial p ∈ Pm(F) such that p(zi) = wi

for 1 ≤ i ≤ m.

Solution. Consider p(z) :=
∑m

j=1

∏
i ̸=j(z − zi)

wj∏
i ̸=j(zj−zi)

. This does the trick.

9) Let p ∈ C[x] be a polynomial with complex coefficients. Define q : C → C by q(z) = p(z)p(z̄),
where p(z̄) is the polynomial obtained by conjugating all of the complex coefficients of p(z̄). Prove
that q is a polynomial with real coefficients.
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Solution. Let p(z) =
∑n

i=0 aiz
i with ai ∈ C, then we have p(z) =

∑n
i=0 aiz

i. Thus, we calculate:

p(z)p(z) = (
n∑

i=0

aiz
i)(

n∑
i=0

aiz
i)

=
2n∑
i=0

(
i∑

j=0

ajai−j)z
i.

Thus, it is enough to check that for every i ≥ 0 we have
∑i

j=0 ajai−j ∈ R. Notice that for i = 2k
for some k ≥ 0 we have

i∑
j=0

ajai−j = |ak|2 +
k−1∑
j=0

(aja2k−j + aja2k−j), (2)

whereas for i = 2k + 1 for some k ≥ 0 we have

i∑
j=0

ajai−j =
k∑

j=0

aj(a2k+1−j + aja2k+1−j). (3)

Now, it is clear that every term in (2) and (3) is a real number.

10) Let p ∈ F[x] be a non-zero polynomial. Consider U := {pq | q ∈ F[x]} ⊆ F[x].

(i) Show that dimF[x]/U = deg p.

Solution. By (ii) above we have a basis of F[x]/U with d elements, so dimF[x]/U = d.

(ii) Find a basis of F[x]/U .

Solution. Let d = deg p, we claim that {1 + U, x + U, . . . , xd−1 + U} is a basis of F[x]/U .
Indeed, it is clear that this set is linearly independent, otherwise we get

xi − xj ∈ U ⇒ xi − xj = pq

for some q, which gives a contradiction since deg xi−xj ≤ max{i, j} ≤ d−1, where deg pq ≥ d.

Now let f ∈ F[x]/U , then f = g + U , where g ∈ F[x]. By Lemma 29 in the Lecture Notes,
there exist a, b ∈ F[x] such that

g = ap+ b and deg b < d.

Thus, we have g + U = b+ U . Since deg b < deg p, we can find βi ∈ F for i ∈ {0, . . . , d− 1}
such that b =

∑d−1
i=0 βix

i; thus

g + U =
d−1∑
i=0

βi(x
i + U).
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