Math 2102: Worksheet 3 Solutions

Unless otherwise stated in the next exercises V and W are finite-dimensional vector spaces and $T \in \mathcal{L}(V, W)$.

1) Let $p \in \mathcal{P}(\mathbb{R})$. Prove that there exists $q \in \mathcal{P}(\mathbb{R})$ such that 5q'' + 3q' = p.

Solution. Since differentiating lowers the degree of a polynomial by 1, we obtain a linear operator $D: \mathcal{P}_{n+1}(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ given by D(q) = 5q'' + 3q'. The Fundamental Theorem of Linear Algebra gives that

 $n+2 = \dim \mathcal{P}_{n+1}(\mathbb{R}) = \dim \operatorname{null} D + \dim \operatorname{range} D.$

Notice that if D(q) = 0 since deg $q'' < \deg q'$, we have that q'' = 0 and q' = 0, which implies that $q \in \mathcal{P}_0(\mathbb{R})$. Thus, dim null D and we obtain:

dim range $D = n + 1 = \dim \mathcal{P}_n(\mathbb{R}).$

So D is surjective, which implies that for any $p \in \mathcal{P}_n(\mathbb{R})$ we have a solution for the equation D(q) = p.

For the next questions assume that V and W are finite-dimensional vector spaces and $T \in \mathcal{L}(V, W)$.

2) Prove that there are bases B_V of V and B_W of W such that the matrix $\mathcal{M}(T, B_V, B_W)$ has all entries zero, except for the k entries in the diagonal where $1 \le k \le \dim \operatorname{range} T$.

Solution. Let $B_{\operatorname{range} T} = \{f_1, \ldots, f_l\}$ be a basis of range T, which we extend to $B_W : \{f_1, \ldots, f_l, f_{l+1}, \ldots, f_m\}$ a basis of W. For each $f_i \in B_{\operatorname{range} T}$, let $v_i \in V$ such that $T(v_i) = f_i$. Notice that $\{v_1, \ldots, v_l\}$ is linearly independent. Indeed, if there is a linear combination $\sum_{i=1}^{l} a_i v_i = 0$, then $T(\sum_{i=1}^{l} a_i v_i) =$ $\sum_{i=1}^{l} a_i e_i = 0$, which implies $a_i = 0$ for every $i \in \{1, \ldots, l\}$.

Consider $B_V = \{v_1, \ldots, v_l, v_{l+1}, \ldots, v_n\}$ an extension of $\{v_1, \ldots, v_l\}$ to a basis of V. Then we notice that

$$\mathcal{M}(T, B_V, B_W)_{i,j} = \begin{cases} 1 & \text{if } 1 \le j \le m, \text{ and } i = j; \\ 0 & \text{else.} \end{cases}$$

3) Prove that dim range T = 1 if and only if there exist a basis of V and W such that with respect to these bases, all entries of $\mathcal{M}(T)$ are 1.

Solution. Assume all the entries of the matrix representing T are 1. Let $B_V = \{v_1, \ldots, v_n\}$. We have that $T(v_i)$ is a multiple of $T(v_j)$ for any i = j, so $\text{Span} \{T(v_1)\} = \text{Span} \{T(v_1), \ldots, T(v_n)\}$. Since range $T = \text{Span} \{T(v_1), \ldots, T(v_n)\}$ we obtain dim range $T = \text{dim} \text{Span} \{T(v_1)\} = 1$, since this it $w_1 + \cdots + w_m$ which is non-zero, where $B_W = \{w_1, \ldots, w_m\}$.

Claim: Let $\{v_1, \ldots, v_k\}$ be a set of linearly independent vectors. Let $w \in \text{Span}\{v_2, \ldots, v_k\}$ then $\{v_1 + w, v_2, \ldots, v_k\}$ is linear independent. Indeed, assume we have a linear combination:

$$a_1(v_1 + w) + \sum_{i=2}^k a_i v_i = 0 \implies a_1 v_1 = 0$$

which implies that $\sum_{i=2}^{k} a_i v_i = 0$, thus $a_i = 0$ for $i \ge 2$. Similarly, $\{v_1 + w, \dots, v_{n-1} + w, v_n\}$ where $w \in \text{Span}\{v_n\}$ is linearly independent.

Now assume that dim range T = 1, by the Fundamental Theorem of Linear Algebra we have a basis $\{v_1, \ldots, v_{n-1}\}$ of null T, which we extend to $\{v_1, \ldots, v_n\}$ a basis of V. Notice that $B_V := \{v_1 + v_n, \ldots, v_{n-1} + v_n, v_n\}$ is also a basis of V by the Claim above. Thus, by assumption we have

$$T(v_i + v_n) = w$$

for some non-zero vector $w \in W$ for all $i \in \{1, \ldots, n-1\}$. Let $\{w, w_1, \ldots, w_{m-1}\}$ be an extension to a basis of W and consider $B_W := \{w - \sum_{i=1}^{m-1}, w_1 + w, \ldots, w_{m-1} + w\}$ which is still a basis by the Claim. Then we claim that

$$\mathcal{M}(T, B_V, B_W)_{i,j} = 1$$

for all $i \in \{1, \ldots, \dim W\}$ and $j \in \{1, \ldots, \dim V\}$. Indeed, for every $i \in \{1, \ldots, n-1\}$

$$T(v_i + v_n) = w = 1 \cdot (w - \sum_{i=1}^{m-1}) + \sum_{i=2}^{m} 1 \cdot w_i$$

and similarly $T(v_n) = w = 1 \cdot (w - \sum_{i=1}^{m-1}) + \sum_{i=2}^{m} 1 \cdot w_i.$

4) Let B_V be a basis of V. Prove that there exists a basis B_W of W such that $\mathcal{M}(T, B_V, B_W)$ has all entries on the first column 0, except for possibly a 1 in the first row.

Solution. Let $B_V := \{e_1, e_2, \ldots, e_n\}$ and consider $w := T(e_1)$. If w is non-zero we let $B_W = \{w, f_2, \ldots, f_m\}$. be an extension to a basis of W, else we let B_W be an arbitrary basis of W. It is clear that

$$\mathcal{M}(T, B_V, B_W)_{i1} = \begin{cases} 1 & if \ w \neq 0 \\ 0 & else \end{cases}$$

This solves the exercise.

5) Let B_W be a basis of W. Prove that there exists a basis B_V of V such that $\mathcal{M}(T, B_V, B_W)$ has all entries on the first row 0, except for possibly a 1 in the first column.

Solution. Let $B_W := \{f_1, f_2, \ldots, f_m\}$ if $f_1 \in \operatorname{range} T$ we let $e_1 \in V$ such that $T(e_1) = f_1$ if $f_1 \notin \operatorname{range} T$, then we let $e_1 \in V$ be any non-zero vector. Consider $B_V = \{e_1, \ldots, e_n\}$ the extension to a basis of V. It is clear that

$$\mathcal{M}(T, B_V, B_W)_{1i} = \begin{cases} 1 & \text{if } f_1 \in \text{range } T \\ 0 & \text{else} \end{cases}$$

- 6) Suppose that $T: V \to V$ is invertible prove that the following are equivalent:
 - (1) T is invertible.
 - (2) Tv_1, \ldots, Tv_n is a basis of V for every basis v_1, \ldots, v_n of V.
 - (3) Tv_1, \ldots, Tv_n is a basis of V for some basis v_1, \ldots, v_n of V.

Solution. $(1) \Rightarrow (2)$: it is enough to check that $\{Tv_1, \ldots, Tv_n\}$ are linearly independent. Let $\sum_{i=1}^{n} a_i Tv_i = 0$ be a linear combination, let S be the inverse of T, then we have:

$$S(\sum_{i=1}^{n} a_i T v_i) = \sum_{i=1}^{n} a_i S(T v_i) = \sum_{i=1}^{n} a_i v_i = 0,$$

which implies that $a_i = 0$ for every $i \in \{1, \ldots, n\}$.

 $(2) \Rightarrow (3)$: is obvious.

 $(3) \Rightarrow (1)$: we define $S : V \to V$ by $S(Tv_i) := v_i$. We notice that for any $v \in V$ we have $v = \sum_{i=1}^{n} a_i v_i$ for some $a_i \in \mathbb{F}$, thus we get:

$$ST(v) = S(\sum_{i=1}^{n} a_i T v_i) = \sum_{i=1}^{n} a_i S(T v_i) = \sum_{i=1}^{n} a_i v_i = v.$$

Similarly, if we write $v = \sum_{i=1}^{n} b_i T v_i$ for some $b_i \in \mathbb{F}$, we have:

$$TS(v) = TS(\sum_{i=1}^{n} b_i Tv_i) = T(\sum_{i=1}^{n} b_i S(Tv_i)) = T(\sum_{i=1}^{n} b_i v_i) = \sum_{i=1}^{n} b_i Tv_i = v$$

7) Let $S, T \in \mathcal{L}(V, W)$ prove that range T = range S if and only if there exist an invertible $E \in \mathcal{L}(V)$ such that S = TE.

Solution. Assume that range T = range S. Let $\{w_1, \ldots, w_l\}$ be a basis of range T = range S. For each $j \in \{1, \ldots, l\}$ we let $v_j \in V$ and $u_j \in V$ such that

$$T(v_j) = w_j = S(u_j).$$

Notice that $\{v_1, \ldots, v_l\}$ and $\{u_1, \ldots, u_l\}$ are linearly independent subsets of V. We extend both of these to $\{v_1, \ldots, v_n\}$ and $\{u_1, \ldots, u_n\}$ bases of V. Notice that $T(v_i) = 0$ and $S(u_i) = 0$ for $i \in \{l+1, \ldots, n\}$, since null $T \cap \text{Span} \{v_{l+1}, \ldots, v_n\} = \text{null } T$ and null $S \cap \text{Span} \{u_{l+1}, \ldots, u_n\} = \text{null } S$ by dimension reasons.

Define:

$$E: V \to V, \qquad E(u_i) = v_i.$$

We notice that $F: V \to V$ given by $F(v_i) = u_i$ is an inverse to E. Now we calculate:

$$S(u_j) = \begin{cases} w_j & \text{if } j \in \{1, \dots, l\} \\ 0 & \text{else} \end{cases} = T(v_j) = T(E(u_j)).$$

As they agree on a basis, we have S = TE, as desired.

Conversely, assume that S = TE for some invertible E. Given $w \in \text{range } S$, then W = S(u) = T(E(u)), so $w \in \text{range } S$. Now assume that $w \in \text{range } T$, then w = T(u) for some $u \in U$. Let $F: V \to V$ be the inverse of E. Notice that S(F(u)) = T(E(F(u))) = T(u) = w, thus $w \in \text{range } S$.

8) Let $S, T \in \mathcal{L}(V, W)$ prove that dim null $T = \dim$ null S if and only if there exist two invertible linear maps $D \in \mathcal{L}(V)$ and $E \in \mathcal{L}(W)$ such that S = ETD.

Solution. Assume that dim null $T = \dim \operatorname{null} S$. Let $\{e_1, \ldots, e_k\}$ be a basis of null T. Extend this to $\{e_1, \ldots, e_k, e_{k+1}, \ldots, e_n\}$ a basis of V. Let $\{f_1, \ldots, f_k\}$ be a basis of null T. Extend this to $\{f_1, \ldots, f_k, f_{k+1}, \ldots, f_n\}$ a basis of V.

Let $B_T := \{Te_{k+1}, \ldots, Te_n\} \subset W$ and $B_S := \{Sf_{k+1}, \ldots, Sf_n\} \subset W$. We claim that B_T is linearly independent subsets. Indeed, let $\sum_{i=1}^{n-k} a_i Te_{k+i} = 0$ be a linear combination, then $T(\sum_{i=1}^{n-k} a_i e_{k+i}) = 0$, which implies that $\sum_{i=1}^{n-k} a_i e_{k+i} \in \text{null } T$, so $\sum_{i=1}^{n-k} a_i e_{k+i} = \sum_{i=1}^{k} b_i e_i$ for some $b_i \in \mathbb{F}$, which implies that $a_i = 0$ for all $i \in \{1, \ldots, n-k\}$. Exactly the same argument gives that B_S is linearly independent.

Consider $B_1 := \{Te_{k+1}, \ldots, Te_n, w_1, \ldots, w_k\}$ be an extension to a basis of W and similarly let $B_2 = \{Sf_{k+1}, \ldots, Sf_n, w'_1, \ldots, w'_k\}$ be an extension to a basis of W. We now define $D: V \to V$ by

$$D(f_i) := e_i \text{ for } i \in \{1, \dots, n\}$$

and we define $E: W \to W$ by

$$E(Te_{k+i}) := Sf_{k+i} \text{ for } i \in \{1, \dots, n-k\} \text{ and } E(w_i) := w'_i \text{ for } i \in \{1, \dots, k\}.$$

Clearly, we have $S(f_i) = T(f_i)$ for each $i \in \{1, \ldots, k\}$, and

$$S(f_{k+i}) = E(Te_{k+i}) = ETD(f_{k+i}) \text{ for } i \in \{1, \dots, n-k\}.$$

Thus, S = ETD.

Conversely, assume that there exist two invertible linear maps $D \in \mathcal{L}(V)$ and $E \in \mathcal{L}(W)$ such that S = ETD. We claim that

$$\dim \operatorname{null} ETD = \dim \operatorname{null} TD = \dim \operatorname{null} T.$$
(1)

Indeed, let $\{e_1, \ldots, e_k\}$ be a basis of null T. We claim that $\{D^{-1}e_1, \ldots, D^{-1}e_k\}$ is a basis of null TD. Since D^{-1} is invertible it is clear that $\{D^{-1}e_1, \ldots, D^{-1}e_k\}$ is linearly independent. Let $v \in$ null TD, then $D(v) = \sum_{i=1}^{k} a_i e_i$ for some $a_i \in \mathbb{F}$, thus $v = \sum_{i=1}^{k} a_i D^{-1}(e_i)$. Similarly, we can prove that if $\{f_1, \ldots, f_k\}$ is a basis of null TD then $\{Ef_1, \ldots, Ef_k\}$ is a basis of null ETD. From (1) we obtain the claim.

9) (i) For every $n \ge 1$, show that $V^n := V \times \cdots \times V$ (*n* times) and $\mathcal{L}(\mathbb{F}^n, V)$ are isomorphic. Solution. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{F}^n . Consider the morphism

$$V^{\times n} \to \mathcal{L}(\mathbb{F}^n, V)$$
$$v = (v_1, \dots, v_n) \mapsto T_v(e_i) := v_i.$$

Notice that $T : \mathbb{F}^n \to V$ is defined by specifying what it does to the basis elements $\{e_i\}_{1 \leq i \leq n}$ of \mathbb{F}^n .

By construction T is linear so we need to show that it is bijective. Assume that T(v) = T(w) then

$$v_i = T(v)(e_i) = T(w)(e_i) = w_i \text{ for every } i \in \{1, ..., n\},\$$

so v = w.

Let $S \in \mathcal{L}(\mathbb{F}^n, V)$, then we consider $v := (S(e_1), \ldots, S(e_n))$. It is clear that

$$S(e_i) = T_v(e_i)$$
 for every $i \in \{1, \ldots, n\}$

thus $T_v = S$. This gives that $v \mapsto T_v$ is surjective.

(ii) How many different isomorphisms are there in (i)?

Solution. Many, we can permute the entries of $V^{\times n}$, e.g. consider

$$V^{\times n} \to \mathcal{L}(\mathbb{F}^n, V)$$
$$v = (v_1, \dots, v_n) \mapsto T_v^{\sigma}(e_i) := v_{\sigma(i)},$$

where $\sigma \in S_n$. We can also multiple each of the coordinates by a distinct non-zero scalar, e.g. for each $\lambda := \{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{F} \setminus \{0\}$ we can consider:

$$V^{\times n} \to \mathcal{L}(\mathbb{F}^n, V)$$
$$v = (v_1, \dots, v_n) \mapsto T_v^{\lambda}(e_i) := \lambda_i v_i$$

Thus, there are at least $S_n \times (\mathbb{F} \setminus \{0\})^{\times n}$ different isomorphisms.

- (iii) (Extra) Let B_V be a basis of V and B be a basis of \mathbb{F}^n . Then we can associate to $v \in V$ two objects: a vector $\mathcal{M}(V, B_V)(v) \in \mathbb{F}^n$ and matrix $\mathcal{M}(L_v, B, B_V)$ where L_v is the linear operator you matched to v on (i). Is there any relation between these two objects? I.e. can you obtain one from the other?
- 10) Let $f: V \to W$ be a function between two vector spaces. Consider graph $f := \{(v, w) \in V \times W \mid f(v) = w\} \subseteq V \times W$. Prove that f is linear if and only if graph f is a subspace of $V \times W$.

Solution. Assume that f is linear. Consider $(v, w), (v', w') \in \operatorname{graph} f$, i.e. f(v) = w and f(v') = w'. Then (v, w) + a(v', w') = (v + a'v', w + aw') and we have

$$f(v + av') = f(v) + af(v') = w + aw' \implies (v + a'v', w + aw') \in \operatorname{graph} f.$$

Since $(0,0) \in \operatorname{graph} f$, we see that $\operatorname{graph} f$ is a subspace.

Conversely, if graph f is a subspace, given $v, v' \in V$ we have $(v, f(v)) \in \operatorname{graph} f$ and $(av', af(v')) \in \operatorname{graph} f$ so $(v + av', f(v) + af(v'))) \in \operatorname{graph} f$ which gives that

$$f(v + av') = f(v) + af(v').$$

11) Let $U = \{(x_1, x_2, \ldots) \in \mathbb{F}^{\mathbb{N}} \mid \text{ only finitely many } x_i \neq 0\}.$

(i) Show that U is a subspace of $\mathbb{F}^{\mathbb{N}}$.

Solution. Notice that $(0, 0, ...,) \in U$, so $U \neq \emptyset$. Let $x, y \in U$, then we have:

$$x + ay = (x_1 + ay_1, x_2 + ay_2, \ldots).$$

Assume that $x_i = 0$ for $i \notin S$, where $S \subset \mathbb{N}$ is finite and $y_i = 0$ for $i \notin T$, where $T \subset \mathbb{N}$ is also finite. Then it is clear that

$$x_i + ay_i = 0$$
 for $i \notin T \cup S$.

Since $T \cup S$ is finite, we have that $x + ay \in U$.

(ii) Prove that $\mathbb{F}^{\mathbb{N}}/U$ is infinite-dimensional.

Solution. For any prime p, define $x_p = (x_{p,1}, x_{p,2}, ...)$ as follows:

$$x_{p,i} = \begin{cases} 1 & \text{if } i \equiv 1 \pmod{p} \\ 0 & \text{otherwise} \end{cases}$$

Notice that $0_{\mathbb{F}^N/U} \neq [x_p] = x_p + U \in \mathbb{F}^N/U$, since has infinitely many nonzero entries. Also for different prime numbers $p, q, x_p - x_q \notin U$ since $x_{p,q}(kp+1) - x_{q,q}(kp+1) = 1$ for all $k \in \mathbb{N}$.

Therefore the set $\{[x_p] \in \mathbb{F}^{\mathbb{N}}/U : \text{ prime } p \in \mathbb{N}\}\$ is an infinite subset of $\mathbb{F}^{\mathbb{N}}/U$ since there are infinitely many primes. Now if there exists $a_1, a_2, \dots \in F$ such that

$$\sum_{i=1}^{\infty} a_i[x_p] = [0]$$

(where p is the *i*-th prime), then we have $\sum_{i=1}^{\infty} a_i x_p \in U$. So there exists $M \in \mathbb{N}$ such that for i > M, the *i*-th entry of the sum is zero. But now if we consider the $(p_M + 1)$ -th entry

(note that $p_M > M$), since $(p_M + 1) - 1$ isn't divisible by any other p_i , we have $x_{p_i,p_M+1} = 0$ for all $i \neq M$. Thus the $(p_M + 1)$ -th entry of $\sum_{i=1}^{\infty} a_i x_{p_i}$ is just a_M which is now zero. By the same argument $a_i = 0$ for all $i \geq M$. So now

$$\sum_{i=1}^{\infty} a_i x_p = \sum_{i=1}^{M-1} a_i x_p.$$

But again for any $1 \leq i \neq j \leq M-1$, $p_i(Mp_1 \dots p_{i-1}p_{i+1} \dots p_{M-1}+1)$ is not divisible by p_j but is divisible by p_i , so the $(p_i(Mp_1 \dots p_{i-1}p_{i+1} \dots p_{M-1}+1)+1)$ -th entry of the sum is just a_i . But since $p_i(Mp_1 \dots p_{i-1}p_{i+1} \dots p_{M-1}+1)+1 > M$, we have $a_i = 0$. To conclude, $a_i = 0$ for all $i \in \mathbb{N}$.

Therefore the infinite subset $\{[x_p] \in \mathbb{F}^{\mathbb{N}}/U : \text{ prime } p \in \mathbb{N}\}$ of $\mathbb{F}^{\mathbb{N}}/U$ is linearly independent which implies $\mathbb{F}^{\mathbb{N}}/U$ is infinite-dimensional.