
Math 2102: Worksheet 3
Solutions

Unless otherwise stated in the next exercises V and W are finite-dimensional vector spaces and T ∈
L(V,W ).

1) Let p ∈ P(R). Prove that there exists q ∈ P(R) such that 5q′′ + 3q′ = p.

Solution. Since differentiating lowers the degree of a polynomial by 1, we obtain a linear operator
D : Pn+1(R) → Pn(R) given by D(q) = 5q′′ + 3q′. The Fundamental Theorem of Linear Algebra
gives that

n+ 2 = dimPn+1(R) = dimnullD + dim rangeD.

Notice that if D(q) = 0 since deg q′′ < deg q′, we have that q′′ = 0 and q′ = 0, which implies that
q ∈ P0(R). Thus, dimnullD and we obtain:

dim rangeD = n+ 1 = dimPn(R).

So D is surjective, which implies that for any p ∈ Pn(R) we have a solution for the equation
D(q) = p.

For the next questions assume that V and W are finite-dimensional vector spaces and T ∈ L(V,W ).

2) Prove that there are bases BV of V and BW of W such that the matrix M(T,BV , BW ) has all
entries zero, except for the k entries in the diagonal where 1 ≤ k ≤ dim rangeT .

Solution. Let BrangeT = {f1, . . . , fl} be a basis of rangeT , which we extend to BW : {f1, . . . , fl, fl+1, . . . , fm}
a basis of W . For each fi ∈ BrangeT , let vi ∈ V such that T (vi) = fi. Notice that {v1, . . . , vl} is

linearly independent. Indeed, if there is a linear combination
∑l

i=1 aivi = 0, then T (
∑l

i=1 aivi) =∑l
i=1 aiei = 0, which implies ai = 0 for every i ∈ {1, . . . , l}.

Consider BV = {v1, . . . vl, vl+1, . . . , vn} an extension of {v1, . . . , vl} to a basis of V . Then we notice
that

M(T,BV , BW )i,j =

{
1 if 1 ≤ j ≤ m, and i = j;

0 else.

3) Prove that dim rangeT = 1 if and only if there exist a basis of V and W such that with respect to
these bases, all entries of M(T ) are 1.

Solution. Assume all the entries of the matrix representing T are 1. Let BV = {v1, . . . , vn}. We
have that T (vi) is a multiple of T (vj) for any i = j, so Span {T (v1)} = Span {T (v1), . . . , T (vn)}.
Since rangeT = Span {T (v1), . . . , T (vn)} we obtain dim rangeT = dimSpan {T (v1)} = 1, since
this it w1 + · · ·wm which is non-zero, where BW = {w1, . . . , wm}.
Claim: Let {v1, . . . , vk} be a set of linearly independent vectors. Let w ∈ Span {v2, . . . , vk} then
{v1 + w, v2, . . . , vk} is linear independent. Indeed, assume we have a linear combination:

a1(v1 + w) +

k∑
i=2

aivi = 0 ⇒ a1v1 = 0
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which implies that
∑k

i=2 aivi = 0, thus ai = 0 for i ≥ 2. Similarly, {v1+w, . . . , vn−1+w, vn} where
w ∈ Span {vn} is linearly independent.

Now assume that dim rangeT = 1, by the Fundamental Theorem of Linear Algebra we have a
basis {v1, . . . , vn−1} of nullT , which we extend to {v1, . . . , vn} a basis of V . Notice that BV :=
{v1 + vn, . . . , vn−1 + vn, vn} is also a basis of V by the Claim above. Thus, by assumption we have

T (vi + vn) = w

for some non-zero vector w ∈ W for all i ∈ {1, . . . , n− 1}. Let {w,w1, . . . , wm−1} be an extension
to a basis of W and consider BW := {w −

∑m−1
i=1 , w1 + w, . . . , wm−1 + w} which is still a basis by

the Claim. Then we claim that
M(T,BV , BW )i,j = 1

for all i ∈ {1, . . . ,dimW} and j ∈ {1, . . . ,dimV }. Indeed, for every i ∈ {1, . . . , n− 1}

T (vi + vn) = w = 1 · (w −
m−1∑
i=1

) +
m∑
i=2

1 · wi

and similarly T (vn) = w = 1 · (w −
∑m−1

i=1 ) +
∑m

i=2 1 · wi.

4) Let BV be a basis of V . Prove that there exists a basis BW of W such that M(T,BV , BW ) has all
entries on the first column 0, except for possibly a 1 in the first row.

Solution. Let BV := {e1, e2, . . . , en} and consider w := T (e1). If w is non-zero we let BW =
{w, f2, . . . , fm}. be an extension to a basis of W , else we let BW be an arbitrary basis of W . It is
clear that

M(T,BV , BW )i1 =

{
1 if w ̸= 0

0 else
.

This solves the exercise.

5) Let BW be a basis of W . Prove that there exists a basis BV of V such that M(T,BV , BW ) has all
entries on the first row 0, except for possibly a 1 in the first column.

Solution. Let BW := {f1, f2, . . . , fm} if f1 ∈ rangeT we let e1 ∈ V such that T (e1) = f1 if
f1 /∈ rangeT , then we let e1 ∈ V be any non-zero vector. Consider BV = {e1, . . . , en} the extension
to a basis of V . It is clear that

M(T,BV , BW )1i =

{
1 if f1 ∈ rangeT

0 else
.

6) Suppose that T : V → V is invertible prove that the following are equivalent:

(1) T is invertible.

(2) Tv1, . . . , T vn is a basis of V for every basis v1, . . . , vn of V .

(3) Tv1, . . . , T vn is a basis of V for some basis v1, . . . , vn of V .

Solution. (1) ⇒ (2): it is enough to check that {Tv1, . . . , T vn} are linearly independent. Let∑n
i=1 aiTvi = 0 be a linear combination, let S be the inverse of T , then we have:

S(
n∑

i=1

aiTvi) =
n∑

i=1

aiS(Tvi) =
n∑

i=1

aivi = 0,
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which implies that ai = 0 for every i ∈ {1, . . . , n}.
(2) ⇒ (3): is obvious.

(3) ⇒ (1): we define S : V → V by S(Tvi) := vi. We notice that for any v ∈ V we have
v =

∑n
i=1 aivi for some ai ∈ F, thus we get:

ST (v) = S(
n∑

i=1

aiTvi) =
n∑

i=1

aiS(Tvi) =
n∑

i=1

aivi = v.

Similarly, if we write v =
∑n

i=1 biTvi for some bi ∈ F, we have:

TS(v) = TS(
n∑

i=1

biTvi) = T (
n∑

i=1

biS(Tvi)) = T (
n∑

i=1

bivi) =
n∑

i=1

biTvi = v.

7) Let S, T ∈ L(V,W ) prove that rangeT = rangeS if and only if there exist an invertible E ∈ L(V )
such that S = TE.

Solution. Assume that rangeT = rangeS. Let {w1, . . . , wl} be a basis of rangeT = rangeS. For
each j ∈ {1, . . . , l} we let vj ∈ V and uj ∈ V such that

T (vj) = wj = S(uj).

Notice that {v1, . . . , vl} and {u1, . . . , ul} are linearly independent subsets of V . We extend both of
these to {v1, . . . , vn} and {u1, . . . , un} bases of V . Notice that T (vi) = 0 and S(ui) = 0 for i ∈
{l+ 1, . . . , n}, since nullT ∩ Span {vl+1, . . . , vn} = nullT and nullS ∩ Span {ul+1, . . . , un} = nullS
by dimension reasons.

Define:
E : V → V, E(ui) = vi.

We notice that F : V → V given by F (vi) = ui is an inverse to E. Now we calculate:

S(uj) =

{
wj if j ∈ {1, . . . , l}
0 else

= T (vj) = T (E(uj)).

As they agree on a basis, we have S = TE, as desired.

Conversely, assume that S = TE for some invertible E. Given w ∈ rangeS, then W = S(u) =
T (E(u)), so w ∈ rangeS. Now assume that w ∈ rangeT , then w = T (u) for some u ∈ U . Let
F : V → V be the inverse of E. Notice that S(F (u)) = T (E(F (u))) = T (u) = w, thus w ∈ rangeS.

8) Let S, T ∈ L(V,W ) prove that dimnullT = dimnullS if and only if there exist two invertible linear
maps D ∈ L(V ) and E ∈ L(W ) such that S = ETD.

Solution. Assume that dimnullT = dimnullS. Let {e1, . . . , ek} be a basis of nullT . Extend
this to {e1, . . . , ek, ek+1, . . . , en} a basis of V . Let {f1, . . . , fk} be a basis of nullT . Extend this to
{f1, . . . , fk, fk+1, . . . , fn} a basis of V .

Let BT := {Tek+1, . . . , T en} ⊂ W and BS := {Sfk+1, . . . , Sfn} ⊂ W . We claim that BT is linearly
independent subsets. Indeed, let

∑n−k
i=1 aiTek+i = 0 be a linear combination, then T (

∑n−k
i=1 aiek+i) =

0, which implies that
∑n−k

i=1 aiek+i ∈ nullT , so
∑n−k

i=1 aiek+i =
∑k

i=1 biei for some bi ∈ F, which
implies that ai = 0 for all i ∈ {1, . . . , n− k}. Exactly the same argument gives that BS is linearly
independent.
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Consider B1 := {Tek+1, . . . , T en, w1, . . . , wk} be an extension to a basis of W and similarly let
B2 = {Sfk+1, . . . , Sfn, w

′
1, . . . , w

′
k} be an extension to a basis of W .

We now define D : V → V by
D(fi) := ei for i ∈ {1, . . . , n}

and we define E : W → W by

E(Tek+i) := Sfk+i for i ∈ {1, . . . , n− k} and E(wi) := w′
i for i ∈ {1, . . . , k}.

Clearly, we have S(fi) = T (fi) for each i ∈ {1, . . . , k}, and

S(fk+i) = E(Tek+i) = ETD(fk+i) for i ∈ {1, . . . , n− k}.

Thus, S = ETD.

Conversely, assume that there exist two invertible linear maps D ∈ L(V ) and E ∈ L(W ) such that
S = ETD. We claim that

dimnullETD = dimnullTD = dimnullT. (1)

Indeed, let {e1, . . . , ek} be a basis of nullT . We claim that {D−1e1, . . . , D
−1ek} is a basis of nullTD.

Since D−1 is invertible it is clear that {D−1e1, . . . , D
−1ek} is linearly independent. Let v ∈ nullTD,

then D(v) =
∑k

i=1 aiei for some ai ∈ F, thus v =
∑k

i=1 aiD
−1(ei). Similarly, we can prove that if

{f1, . . . , fk} is a basis of nullTD then {Ef1, . . . , Efk} is a basis of nullETD. From (1) we obtain
the claim.

9) (i) For every n ≥ 1, show that V n := V × · · · × V (n times) and L(Fn, V ) are isomorphic.

Solution. Let {e1, . . . , en} be the standard basis of Fn. Consider the morphism

V ×n → L(Fn, V )

v = (v1, . . . , vn) 7→ Tv(ei) := vi.

Notice that T : Fn → V is defined by specifying what it does to the basis elements {ei}1≤i≤n

of Fn.

By construction T is linear so we need to show that it is bijective. Assume that T (v) = T (w)
then

vi = T (v)(ei) = T (w)(ei) = wi for every i ∈ {1, . . . , n},
so v = w.

Let S ∈ L(Fn, V ), then we consider v := (S(e1), . . . , S(en)). It is clear that

S(ei) = Tv(ei) for every i ∈ {1, . . . , n}

thus Tv = S. This gives that v 7→ Tv is surjective.

(ii) How many different isomorphisms are there in (i)?

Solution. Many, we can permute the entries of V ×n, e.g. consider

V ×n → L(Fn, V )

v = (v1, . . . , vn) 7→ T σ
v (ei) := vσ(i),

where σ ∈ Sn. We can also multiple each of the coordinates by a distinct non-zero scalar, e.g.
for each λ := {λ1, . . . , λn} ⊂ F\{0} we can consider:

V ×n → L(Fn, V )

v = (v1, . . . , vn) 7→ T λ
v (ei) := λivi.

Thus, there are at least Sn × (F\{0})×n different isomorphisms.
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(iii) (Extra) Let BV be a basis of V and B be a basis of Fn. Then we can associate to v ∈ V
two objects: a vector M(V,BV )(v) ∈ Fn and matrix M(Lv, B,BV ) where Lv is the linear
operator you matched to v on (i). Is there any relation between these two objects? I.e. can
you obtain one from the other?

10) Let f : V → W be a function between two vector spaces. Consider graph f := {(v, w) ∈ V ×
W | f(v) = w} ⊆ V ×W . Prove that f is linear if and only if graph f is a subspace of V ×W .

Solution. Assume that f is linear. Consider (v, w), (v′, w′) ∈ graph f , i.e. f(v) = w and f(v′) =
w′. Then (v, w) + a(v′, w′) = (v + a′v′, w + aw′) and we have

f(v + av′) = f(v) + af(v′) = w + aw′ ⇒ (v + a′v′, w + aw′) ∈ graph f.

Since (0, 0) ∈ graph f , we see that graph f is a subspace.

Conversely, if graph f is a subspace, given v, v′ ∈ V we have (v, f(v)) ∈ graph f and (av′, af(v′)) ∈
graph f so (v + av′, f(v) + af(v′))) ∈ graph f which gives that

f(v + av′) = f(v) + af(v′).

11) Let U = {(x1, x2, . . .) ∈ FN | only finitely many xi ̸= 0}.

(i) Show that U is a subspace of FN.

Solution. Notice that (0, 0, . . . , ) ∈ U , so U ̸= ∅.
Let x, y ∈ U , then we have:

x+ ay = (x1 + ay1, x2 + ay2, . . .).

Assume that xi = 0 for i /∈ S, where S ⊂ N is finite and yi = 0 for i /∈ T , where T ⊂ N is
also finite. Then it is clear that

xi + ayi = 0 for i /∈ T ∪ S.

Since T ∪ S is finite, we have that x+ ay ∈ U .

(ii) Prove that FN/U is infinite-dimensional.

Solution. For any prime p, define xp = (xp,1, xp,2, . . . ) as follows:

xp,i =

{
1 if i ≡ 1 (mod p)

0 otherwise
.

Notice that 0FN/U ̸= [xp] = xp + U ∈ FN/U , since has infinitely many nonzero entries. Also
for different prime numbers p, q, xp − xq /∈ U since xp,q(kp + 1) − xq,q(kp + 1) = 1 for all
k ∈ N.
Therefore the set {[xp] ∈ FN/U : prime p ∈ N} is an infinite subset of FN/U since there are
infinitely many primes. Now if there exists a1, a2, · · · ∈ F such that

∞∑
i=1

ai[xp] = [0]

(where p is the i-th prime), then we have
∑∞

i=1 aixp ∈ U . So there exists M ∈ N such that
for i > M , the i-th entry of the sum is zero. But now if we consider the (pM + 1)-th entry
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(note that pM > M), since (pM + 1)− 1 isn’t divisible by any other pi, we have xpi,pM+1 = 0
for all i ̸= M . Thus the (pM + 1)-th entry of

∑∞
i=1 aixpi is just aM which is now zero. By

the same argument ai = 0 for all i ≥ M . So now

∞∑
i=1

aixp =

M−1∑
i=1

aixp.

But again for any 1 ≤ i ̸= j ≤ M − 1, pi(Mp1 . . . pi−1pi+1 . . . pM−1 + 1) is not divisible by pj
but is divisible by pi, so the (pi(Mp1 . . . pi−1pi+1 . . . pM−1 +1)+ 1)-th entry of the sum is just
ai. But since pi(Mp1 . . . pi−1pi+1 . . . pM−1+1)+1 > M , we have ai = 0. To conclude, ai = 0
for all i ∈ N.
Therefore the infinite subset {[xp] ∈ FN/U : prime p ∈ N} of FN/U is linearly independent
which implies FN/U is infinite-dimensional.
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