Math 2102: Worksheet 2

- 1) Suppose that V is finite-dimensional and that $U, W \subset$ are subspaces such that U + W = V. Prove that there exists a basis of V consisting of vectors in $U \cup W$.
- 2) Let $U := \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 \mid 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0\}.$
 - (i) Find a basis of U.
 - (ii) Extend the basis of (i) to a basis of \mathbb{C}^5 .
 - (iii) Find a subspace $W \subset \mathbb{C}^5$ such that $V \oplus W = \mathbb{C}^5$.
- 3) Let $U = \{ p \in \mathcal{P}_4(\mathbb{R}) \mid \int_{-1}^1 p = 0 \}.$
 - (i) Find a basis of U.
 - (ii) Extend the basis of (i) to a basis of $\mathcal{P}_4(\mathbb{R})$.
 - (iii) Find a subspace $W \subset \mathcal{P}_4(\mathbb{R})$ such that $V \oplus W = \mathcal{P}_4(\mathbb{R})$.
- 4) Assume that $\{v_1, \ldots, v_m\}$ is a linearly independent subset of a vector space V. Let $w \in V$, prove that

dim Span
$$(\{v_1 + w, \dots, v_m + w\}) \ge m - 1.$$

- 5) Let V be a finite-dimensional vector space and $U \subset V$ a proper subspace, i.e. $U \neq V$. Let $n = \dim V$ and $m = \dim U$. Prove that there are n m subspaces of V, each of dimension n 1, whose intersection is U.
- 6) Let V be a 1-dimensional vector space. Prove that every linear map $T: V \to V$ is given by multiplication by a scalar.
- 7) Can you come with examples of vector spaces V and W and functions $\varphi : V \to W$ such that φ satisfies either additivity or homogeneity, but *not* both.
- 8) Let $U \subset V$ be a subspace of a finite-dimensional vector space V. Let $\varphi : U \to W$ be a linear map, prove that there exists an extension $\overline{\varphi} : V \to W$ which is a linear map, i.e. for every $u \in U$ one has $\overline{\varphi}(u) = \varphi(u)$.
- 9) Given an example of a linear map T with dim null T = 3 and dim range T = 2.
- 10) Let $S, T \in \mathcal{L}(V)$ and assume that range $S \subseteq \text{null } T$. Prove that $(ST)^2 = 0$.
- (a) Give an example of T ∈ L(ℝ⁴) such that range T = null T.
 (b) Prove that there exist no T ∈ L(ℝ⁵) such that range T = null T.
- 12) Let $P \in \mathcal{L}(V)$ such that $P^2 = P$. Prove that $V = \operatorname{null} P \oplus \operatorname{range} P$.