Math 2102: Worksheet 2

Solutions

1) Suppose that V is finite-dimensional and that U, W C are subspaces such that U + W = V. Prove
that there exists a basis of V' consisting of vectors in U U W.

Solution. By definition of the sum of vector spaces, Span (U U W) = V. The reduction theorem
says we may reduce U U W to a basis.
2) Let U := {(21, 22,23, 24, 25) € C® | 621 = 29 and 23 + 224 + 325 = 0}.

(i) Find a basis of U.
Solution. {(1,6,0,0,0),(0,0,—2,1,0),(0,0,—3,0,1)} is a basis of U as for any vectors in U,

(2:1, 22,23, 24, 2’5) = Zl(l, 6,0,0, 0) + 24(0, 0,—-2,1, 0) + 2’5(0, 0,-3,0, 1).

(ii) Extend the basis of (i) to a basis of C5.

Solution. {(1,6,0,0,0),(0,0,-2,1,0),(0,0,-3,0,1),(0,1,0,0,0),(0,0,1,0,0)} is a basis of
C® evidently.

(iii) Find a subspace W C C® such that V& W = C°.
Solution. By conclusion in (i), W = Span {(0, 1,0, 0,0), (0,0,1,0,0)}.
1
3) Let U ={p € P4(R) | fflp = 0}.
(i) Find a basis of U.
Solution. Suppose p(x) = ag + a1z + asz? + azx® + aqz* € U, then
1
2 2
/ p(x)dx:2a0+ﬂ+ﬁ:0.
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On the contrary, it is trivial that if 15a9+5a2+3a4 = 0 thenp € U, soU = {(a1,a2,as,a4,a5) €
R® : 15ag + 5as + 3a4 = 0} by identifying 2* with (0,...,0,1,0,...,0), where 1 is on the i-th
slot. Hence, we may apply a similar method as 1).

{x,23, =3+ 22, -5 + 2}

s a basis of U.

(ii) Extend the basis of (i) to a basis of P4(R).

Solution.
{1,z,23, -3+ 2% -5+ 2%}

is a basis of P4(R).
(iii) Find a subspace W C P4(R) such that V & W = P4(R).
Solution. W =R will work.

4) Assume that {v1,...,v,,} is a linearly independent subset of a vector space V. Let w € V', prove
that
dim Span ({v1 + w, ..., vy, +w}) > m — 1.
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Solution. If w ¢ Span{vi,...,vn}, i.e. {w,v1,...,0,} is linearly independent. Notice {w,v; +
W, ..., vm+w} generates the same space with the same amount of vectors; it is linearly independent,
in particular, so is {vi +w, ..., wy, + w}, and hence dim Span ({vy + w, ..., vy, + w}) = m.

Now suppose w = > " a;v;. If a; =0 for all i =1,...,n, then the dimension is still m.

Suppose a1 # 0 by rearranging the index if necessary. We may simply see that
Span {w, vy + w, ..., v, +w} = Span{w, v, ..., vy} = Span{vi,...,vn}.

[The idea is from the Gaussian eliminations.] Similarly, we may conclude that {w,vy+w, ..., v+
w} is linearly independent, in particular, {vy + w, ..., vy, +w} is linearly independent, and hence
the desired inequality is proven.

Let V be a finite-dimensional vector space and U C V a proper subspace, i.e. U # V. Let
n =dimV and m = dimU. Prove that there are n — m subspaces of V', each of dimension n — 1,
whose intersection is U.

Solution. Let {uj,...,un} be a basis of U, and we may extend it to a basis of V, denoted

{u, ... Um,v1, ..., Un—m . Since {v; : i =1,...,n—m} is linearly independent, W; := Span {uy, ..., Um, v1,...

1s distinct for all 1.

We claim (" W; = Span{u; : i = 1,...,m} = U. Indeed, since W; 2 U for all i, we have
NiZ,"W; D U. Notice that uj € W; for all i = 1,...,n —m and for all j = 1,...,m, thus
Ni=" W; CU, so we are done.

Let V be a 1-dimensional vector space. Prove that every linear map 7' : V. — V is given by
multiplication by a scalar.

Solution. Let {v} be a basis of V. Since Tv € V, we may find Tv = Av for some X\ € C.

For any w € V, w = av for some a € F, then by the linearity, Tw = aTv = alv = Aw. Hence
Tw = w for allw e V.

Can you come with examples of vector spaces V and W and functions ¢ : V. — W such that ¢
satisfies either additivity or homogeneity, but not both.

1.3+y3

Solution. Consider f : R?> — R given by (z,y) — el

additive as f(0,1) 4+ f(1,0) =2 # 1= f(1,1).

Consider R as a vector space over Q. By the axiom of choice, we may find a basis {v; : i € I} of
R. If z,y ¢ Spang{v;}, then x +y ¢ Spang{v;} by the linear independence. Define f : R — R by
f(qui) = q and f =0 otherwise. It is easy to see that f is additive but not (R-)homogeneous.

It is evidently homogeneous but not

Let U C V be a subspace of a finite-dimensional vector space V. Let ¢ : U — W be a linear map,
prove that there exists an extension @ : V' — W which is a linear map, i.e. for every u € U one has

P(u) = o(u).
Solution. Let {ui,...,un} be a basis of U, then we may extend it to a basis of V, denoted
{ui,...,um,v1,...,0,}. Define @ by u; — o(u;) and vj — 0 foralli=1,..., mandj=1,...,n.

To extend this result to infinite-dimensional situations one needs to develop more theory. One result
in that direction is the Hahn-Banach Theorem (see here).

Given an example of a linear map T with dimnull7 = 3 and dimrange T = 2.

, U


https://en.wikipedia.org/wiki/Hahn–Banach_theorem
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Solution. Define T' by Tey = ey, Tea = ez, and Tes = Tey = Tes =0, where {e; : i =1,...,5} is
the standard basis of R>. One should check the range and kernel of T on their own.

Let S,T € £(V) and assume that range S C null 7. Prove that (ST)? = 0.

Solution. For any v € V, STv € range S C null T, and hence STSTv = S(0) = 0.

(a) Give an example of T € £L(R*) such that rangeT = null T'.

Solution. Define T by Tey = e3, Tey = eq, and Tes = Teqy = 0, where {e; : 1 =1,...,4} is
the standard basis of R*. One should check the range and kernel of T on their own.

(b) Prove that there exist no 7' € £(R®) such that rangeT = null 7.

Solution. By the first isomorphism theorem of R-vector spaces, rangel + nullT = 5. If
range T = null T', then rangeT" ¢ N, which is absurd.

Let P € L(V) such that P2 = P. Prove that V = null P @ range P.

Solution. Suppose v € null P N range P, then we may find w € V such that Pw = v, then
v = Pw = P*w = Pv=0. It is trivial that 0 € null P Nrange P, so null P Nrange P = {0}.

Suppose {u1,...,up} is a basis of null P and {v1,...,v,} is a basis of range P, where n+r = dim V.
Suppose ajui + -+ + anty + byvy + -+ + bpv, =0, then
ajuy + -+ + apuy = —biv; — -+ — byv, € null P Nrange P = {0}.

Since {u;} is linearly independent, then a; = 0 for all i. Similarly, bj = 0 for all j. Therefore,
we may conclude that {uy, ..., up,v1,...,0,} is linearly independent, so dim (null P @ range P) =
n+r=dimV. Since null P & range P C V, we may conclude that null P & range P = V.



