Math 2102: Worksheet 2 Solutions

1) Suppose that V is finite-dimensional and that $U, W \subset \text{are subspaces such that } U + W = V$. Prove that there exists a basis of V consisting of vectors in $U \cup W$.

Solution. By definition of the sum of vector spaces, Span $(U \cup W) = V$. The reduction theorem says we may reduce $U \cup W$ to a basis.

- 2) Let $U := \{ (z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 \mid 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0 \}.$
	- (i) Find a basis of U.

Solution. $\{(1, 6, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1)\}$ is a basis of U as for any vectors in U,

$$
(z_1, z_2, z_3, z_4, z_5) = z_1(1, 6, 0, 0, 0) + z_4(0, 0, -2, 1, 0) + z_5(0, 0, -3, 0, 1).
$$

(ii) Extend the basis of (i) to a basis of \mathbb{C}^5 .

Solution. $\{(1, 6, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)\}\$ is a basis of \mathbb{C}^5 evidently.

- (iii) Find a subspace $W \subset \mathbb{C}^5$ such that $V \oplus W = \mathbb{C}^5$. **Solution.** By conclusion in (ii), $W = \text{Span} \{ (0, 1, 0, 0, 0), (0, 0, 1, 0, 0) \}.$
- 3) Let $U = \{p \in \mathcal{P}_4(\mathbb{R}) \mid \int_{-1}^1 p = 0\}.$
	- (i) Find a basis of U.

Solution. Suppose $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 \in U$, then

$$
\int_{-1}^{1} p(x) dx = 2a_0 + \frac{2a_2}{3} + \frac{2a_4}{5} = 0.
$$

On the contrary, it is trivial that if $15a_0+5a_2+3a_4 = 0$ then $p \in U$, so $U \cong \{(a_1, a_2, a_3, a_4, a_5) \in$ $\mathbb{R}^5: 15a_0 + 5a_2 + 3a_4 = 0$ by identifying z^i with $(0, ..., 0, 1, 0, ..., 0)$, where 1 is on the *i*-th slot. Hence, we may apply a similar method as 1).

$$
\{x, x^3, -3 + x^2, -5 + x^4\}
$$

is a basis of U.

(ii) Extend the basis of (i) to a basis of $\mathcal{P}_4(\mathbb{R})$. Solution.

$$
\{1, x, x^3, -3 + x^2, -5 + x^4\}
$$

is a basis of $\mathcal{P}_4(\mathbb{R})$.

- (iii) Find a subspace $W \subset \mathcal{P}_4(\mathbb{R})$ such that $V \oplus W = \mathcal{P}_4(\mathbb{R})$. **Solution.** $W = \mathbb{R}$ will work.
- 4) Assume that $\{v_1, \ldots, v_m\}$ is a linearly independent subset of a vector space V. Let $w \in V$, prove that

$$
\dim \text{Span}(\{v_1 + w, \ldots, v_m + w\}) \ge m - 1.
$$

Solution. If $w \notin \text{Span } \{v_1, \ldots, v_m\}$, i.e. $\{w, v_1, \ldots, v_m\}$ is linearly independent. Notice $\{w, v_1 +$ w, \ldots, v_m+w generates the same space with the same amount of vectors; it is linearly independent, in particular, so is $\{v_1 + w, \ldots, w_m + w\}$, and hence dim Span $(\{v_1 + w, \ldots, v_m + w\}) = m$. Now suppose $w = \sum_{i=1}^{m} a_i v_i$. If $a_i = 0$ for all $i = 1, ..., n$, then the dimension is still m. Suppose $a_1 \neq 0$ by rearranging the index if necessary. We may simply see that

 $\text{Span } \{w, v_2 + w, \ldots, v_m + w\} = \text{Span } \{w, v_2, \ldots, v_m\} = \text{Span } \{v_1, \ldots, v_m\}.$

[The idea is from the Gaussian eliminations.] Similarly, we may conclude that $\{w, v_2 + w, \ldots, v_m + w\}$ w} is linearly independent, in particular, $\{v_2 + w, \ldots, v_m + w\}$ is linearly independent, and hence the desired inequality is proven.

5) Let V be a finite-dimensional vector space and $U \subset V$ a proper subspace, i.e. $U \neq V$. Let $n = \dim V$ and $m = \dim U$. Prove that there are $n - m$ subspaces of V, each of dimension $n - 1$, whose intersection is U .

Solution. Let $\{u_1, \ldots, u_m\}$ be a basis of U, and we may extend it to a basis of V, denoted $\{u_1,\ldots,u_m,v_1,\ldots,v_{n-m}\}$. Since $\{v_i:i=1,\ldots,n-m\}$ is linearly independent, $W_i:=\text{Span}\{u_1,\ldots,u_m,v_1,\ldots,v_m\}$ is distinct for all i.

We claim $\bigcap_{i=1}^{n-m} W_i = \text{Span}\{u_i : i = 1,\ldots,m\} = U$. Indeed, since $W_i \supseteq U$ for all i, we have $\bigcap_{i=1}^{n-m} W_i \supseteq U$. Notice that $u_j \in W_i$ for all $i = 1, \ldots, n-m$ and for all $j = 1, \ldots, m$, thus $\bigcap_{i=1}^{n-m} W_i \subseteq U$, so we are done.

6) Let V be a 1-dimensional vector space. Prove that every linear map $T: V \to V$ is given by multiplication by a scalar.

Solution. Let $\{v\}$ be a basis of V. Since $Tv \in V$, we may find $Tv = \lambda v$ for some $\lambda \in \mathbb{C}$. For any $w \in V$, $w = av$ for some $a \in \mathbb{F}$, then by the linearity, $Tw = aTv = a\lambda v = \lambda w$. Hence $Tw = \lambda w$ for all $w \in V$.

7) Can you come with examples of vector spaces V and W and functions $\varphi: V \to W$ such that φ satisfies either additivity or homogeneity, but *not* both.

Solution. Consider $f : \mathbb{R}^2 \to \mathbb{R}$ given by $(x, y) \mapsto \frac{x^3 + y^3}{x^2 + y^2}$ $\frac{x^2+y^2}{x^2+y^2}$. It is evidently homogeneous but not additive as $f(0, 1) + f(1, 0) = 2 \neq 1 = f(1, 1).$

Consider R as a vector space over Q. By the axiom of choice, we may find a basis $\{v_i : i \in I\}$ of R. If $x, y \notin \text{Span}_{\mathbb{Q}}\{v_i\}$, then $x + y \notin \text{Span}_{\mathbb{Q}}\{v_i\}$ by the linear independence. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(qv_i) = q$ and $f = 0$ otherwise. It is easy to see that f is additive but not (R-)homogeneous.

8) Let $U \subset V$ be a subspace of a finite-dimensional vector space V. Let $\varphi: U \to W$ be a linear map, prove that there exists an extension $\overline{\varphi}: V \to W$ which is a linear map, i.e. for every $u \in U$ one has $\overline{\varphi}(u) = \varphi(u).$

Solution. Let $\{u_1, \ldots, u_m\}$ be a basis of U, then we may extend it to a basis of V, denoted $\{u_1,\ldots,u_m,v_1,\ldots,v_n\}$. Define $\overline{\varphi}$ by $u_i \mapsto \varphi(u_i)$ and $v_j \mapsto 0$ for all $i=1,\ldots,m$ and $j=1,\ldots,n$. To extend this result to infinite-dimensional situations one needs to develop more theory. One result in that direction is the Hahn-Banach Theorem (see [here\)](https://en.wikipedia.org/wiki/Hahn–Banach_theorem).

9) Given an example of a linear map T with dim null $T = 3$ and dim range $T = 2$.

Solution. Define T by $Te_1 = e_1$, $Te_2 = e_2$, and $Te_3 = Te_4 = Te_5 = 0$, where $\{e_i : i = 1, ..., 5\}$ is the standard basis of \mathbb{R}^5 . One should check the range and kernel of T on their own.

10) Let $S, T \in \mathcal{L}(V)$ and assume that range $S \subseteq \text{null } T$. Prove that $(ST)^2 = 0$.

Solution. For any $v \in V$, $STv \in \text{range } S \subset \text{null } T$, and hence $STSTv = S(0) = 0$.

- 11) (a) Give an example of $T \in \mathcal{L}(\mathbb{R}^4)$ such that range $T = \text{null } T$. **Solution.** Define T by $Te_1 = e_3$, $Te_2 = e_4$, and $Te_3 = Te_4 = 0$, where $\{e_i : i = 1, ..., 4\}$ is the standard basis of \mathbb{R}^4 . One should check the range and kernel of T on their own.
	- (b) Prove that there exist no $T \in \mathcal{L}(\mathbb{R}^5)$ such that range $T = \text{null } T$.

Solution. By the first isomorphism theorem of R-vector spaces, range $T + nullT = 5$. If range $T = \text{null } T$, then range $T \notin \mathbb{N}$, which is absurd.

12) Let $P \in \mathcal{L}(V)$ such that $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$.

Solution. Suppose $v \in \text{null } P \cap \text{range } P$, then we may find $w \in V$ such that $P w = v$, then $v = P w = P^2 w = P v = 0$. It is trivial that $0 \in \text{null } P \cap \text{range } P$, so $\text{null } P \cap \text{range } P = \{0\}.$

Suppose $\{u_1, \ldots, u_n\}$ is a basis of null P and $\{v_1, \ldots, v_r\}$ is a basis of range P, where $n+r = \dim V$. Suppose $a_1u_1 + \cdots + a_nu_n + b_1v_1 + \cdots + b_rv_r = 0$, then

$$
a_1u_1 + \dots + a_nu_n = -b_1v_1 - \dots - b_rv_r \in \text{null } P \cap \text{range } P = \{0\}.
$$

Since $\{u_i\}$ is linearly independent, then $a_i = 0$ for all i. Similarly, $b_j = 0$ for all j. Therefore, we may conclude that $\{u_1, \ldots, u_n, v_1, \ldots, v_r\}$ is linearly independent, so dim (null $P \oplus \text{range } P$) = $n + r = \dim V$. Since null $P \oplus \text{range } P \subset V$, we may conclude that null $P \oplus \text{range } P = V$.