
Math 2102: Worksheet 2
Solutions

1) Suppose that V is finite-dimensional and that U,W ⊂ are subspaces such that U +W = V . Prove
that there exists a basis of V consisting of vectors in U ∪W .

Solution. By definition of the sum of vector spaces, Span (U ∪W ) = V . The reduction theorem
says we may reduce U ∪W to a basis.

2) Let U := {(z1, z2, z3, z4, z5) ∈ C5 | 6z1 = z2 and z3 + 2z4 + 3z5 = 0}.

(i) Find a basis of U .

Solution. {(1, 6, 0, 0, 0), (0, 0,−2, 1, 0), (0, 0,−3, 0, 1)} is a basis of U as for any vectors in U ,

(z1, z2, z3, z4, z5) = z1(1, 6, 0, 0, 0) + z4(0, 0,−2, 1, 0) + z5(0, 0,−3, 0, 1).

(ii) Extend the basis of (i) to a basis of C5.

Solution. {(1, 6, 0, 0, 0), (0, 0,−2, 1, 0), (0, 0,−3, 0, 1), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)} is a basis of
C5 evidently.

(iii) Find a subspace W ⊂ C5 such that V ⊕W = C5.

Solution. By conclusion in (ii), W = Span {(0, 1, 0, 0, 0), (0, 0, 1, 0, 0)}.

3) Let U = {p ∈ P4(R) |
∫ 1
−1 p = 0}.

(i) Find a basis of U .

Solution. Suppose p(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 ∈ U , then∫ 1

−1
p(x) dx = 2a0 +

2a2
3

+
2a4
5

= 0.

On the contrary, it is trivial that if 15a0+5a2+3a4 = 0 then p ∈ U , so U ∼= {(a1, a2, a3, a4, a5) ∈
R5 : 15a0 + 5a2 + 3a4 = 0} by identifying zi with (0, . . . , 0, 1, 0, . . . , 0), where 1 is on the i-th
slot. Hence, we may apply a similar method as 1).

{x, x3,−3 + x2,−5 + x4}

is a basis of U .

(ii) Extend the basis of (i) to a basis of P4(R).
Solution.

{1, x, x3,−3 + x2,−5 + x4}

is a basis of P4(R).

(iii) Find a subspace W ⊂ P4(R) such that V ⊕W = P4(R).
Solution. W = R will work.

4) Assume that {v1, . . . , vm} is a linearly independent subset of a vector space V . Let w ∈ V , prove
that

dimSpan ({v1 + w, . . . , vm + w}) ≥ m− 1.
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Solution. If w /∈ Span {v1, . . . , vm}, i.e. {w, v1, . . . , vm} is linearly independent. Notice {w, v1 +
w, . . . , vm+w} generates the same space with the same amount of vectors; it is linearly independent,
in particular, so is {v1 + w, . . . , wm + w}, and hence dimSpan ({v1 + w, . . . , vm + w}) = m.

Now suppose w =
∑m

i=1 aivi. If ai = 0 for all i = 1, . . . , n, then the dimension is still m.

Suppose a1 ̸= 0 by rearranging the index if necessary. We may simply see that

Span {w, v2 + w, . . . , vm + w} = Span {w, v2, . . . , vm} = Span {v1, . . . , vm}.

[The idea is from the Gaussian eliminations.] Similarly, we may conclude that {w, v2+w, . . . , vm+
w} is linearly independent, in particular, {v2 + w, . . . , vm + w} is linearly independent, and hence
the desired inequality is proven.

5) Let V be a finite-dimensional vector space and U ⊂ V a proper subspace, i.e. U ̸= V . Let
n = dimV and m = dimU . Prove that there are n−m subspaces of V , each of dimension n− 1,
whose intersection is U .

Solution. Let {u1, . . . , um} be a basis of U , and we may extend it to a basis of V , denoted
{u1, . . . , um, v1, . . . , vn−m}. Since {vi : i = 1, . . . , n−m} is linearly independent, Wi := Span {u1, . . . , um, v1, . . . , vn−m}\{vi}
is distinct for all i.

We claim
⋂n−m

i=1 Wi = Span {ui : i = 1, . . . ,m} = U . Indeed, since Wi ⊇ U for all i, we have⋂n−m
i=1 Wi ⊇ U . Notice that uj ∈ Wi for all i = 1, . . . , n − m and for all j = 1, . . . ,m, thus⋂n−m
i=1 Wi ⊆ U , so we are done.

6) Let V be a 1-dimensional vector space. Prove that every linear map T : V → V is given by
multiplication by a scalar.

Solution. Let {v} be a basis of V . Since Tv ∈ V , we may find Tv = λv for some λ ∈ C.
For any w ∈ V , w = av for some a ∈ F, then by the linearity, Tw = aTv = aλv = λw. Hence
Tw = λw for all w ∈ V .

7) Can you come with examples of vector spaces V and W and functions φ : V → W such that φ
satisfies either additivity or homogeneity, but not both.

Solution. Consider f : R2 → R given by (x, y) 7→ x3+y3

x2+y2
. It is evidently homogeneous but not

additive as f(0, 1) + f(1, 0) = 2 ̸= 1 = f(1, 1).

Consider R as a vector space over Q. By the axiom of choice, we may find a basis {vi : i ∈ I} of
R. If x, y /∈ SpanQ{vi}, then x+ y /∈ SpanQ{vi} by the linear independence. Define f : R → R by
f(qvi) = q and f = 0 otherwise. It is easy to see that f is additive but not (R-)homogeneous.

8) Let U ⊂ V be a subspace of a finite-dimensional vector space V . Let φ : U → W be a linear map,
prove that there exists an extension φ : V → W which is a linear map, i.e. for every u ∈ U one has
φ(u) = φ(u).

Solution. Let {u1, . . . , um} be a basis of U , then we may extend it to a basis of V , denoted
{u1, . . . , um, v1, . . . , vn}. Define φ by ui 7→ φ(ui) and vj 7→ 0 for all i = 1, . . . ,m and j = 1, . . . , n.

To extend this result to infinite-dimensional situations one needs to develop more theory. One result
in that direction is the Hahn-Banach Theorem (see here).

9) Given an example of a linear map T with dimnullT = 3 and dim rangeT = 2.
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Solution. Define T by Te1 = e1, Te2 = e2, and Te3 = Te4 = Te5 = 0, where {ei : i = 1, . . . , 5} is
the standard basis of R5. One should check the range and kernel of T on their own.

10) Let S, T ∈ L(V ) and assume that rangeS ⊆ nullT . Prove that (ST )2 = 0.

Solution. For any v ∈ V , STv ∈ rangeS ⊂ nullT , and hence STSTv = S(0) = 0.

11) (a) Give an example of T ∈ L(R4) such that rangeT = nullT .

Solution. Define T by Te1 = e3, Te2 = e4, and Te3 = Te4 = 0, where {ei : i = 1, . . . , 4} is
the standard basis of R4. One should check the range and kernel of T on their own.

(b) Prove that there exist no T ∈ L(R5) such that rangeT = nullT .

Solution. By the first isomorphism theorem of R-vector spaces, rangeT + nullT = 5. If
rangeT = nullT , then rangeT /∈ N, which is absurd.

12) Let P ∈ L(V ) such that P 2 = P . Prove that V = nullP ⊕ rangeP .

Solution. Suppose v ∈ nullP ∩ rangeP , then we may find w ∈ V such that Pw = v, then
v = Pw = P 2w = Pv = 0. It is trivial that 0 ∈ nullP ∩ rangeP , so nullP ∩ rangeP = {0}.
Suppose {u1, . . . , un} is a basis of nullP and {v1, . . . , vr} is a basis of rangeP , where n+r = dimV .
Suppose a1u1 + · · ·+ anun + b1v1 + · · ·+ brvr = 0, then

a1u1 + · · ·+ anun = −b1v1 − · · · − brvr ∈ nullP ∩ rangeP = {0}.

Since {ui} is linearly independent, then ai = 0 for all i. Similarly, bj = 0 for all j. Therefore,
we may conclude that {u1, . . . , un, v1, . . . , vr} is linearly independent, so dim (nullP ⊕ rangeP ) =
n+ r = dimV . Since nullP ⊕ rangeP ⊂ V , we may conclude that nullP ⊕ rangeP = V .
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