
Math 2102: Worksheet 1
Solutions

1) Exercise 6 from §1B.

Solution. Consider (2 − 1) · ∞ = 1 · ∞ = ∞, however 2 · ∞ − 1 · ∞ = ∞ + (−∞) = 0. So
distributivity fails and V = R ∪ {∞} ∪ {−∞} is not a vector space.

2) Let U1, U2 ⊆ V be two subspaces. Prove that U1 ∪ U2 is a subspace if and only if U1 ⊆ U2 or
U2 ⊆ U1.

Solution. Assume that U1 ⊆ U2 or U2 ⊆ U1, then we have U1 ∪ U2 = Ui ⊆ V for i ∈ {1, 2}, thus
U1 ∪ U2 is a subspace.

Now assume that U1 ∪ U2 is a subspace and by contradiction assume that U1 ̸⊂ U2 and U2 ̸⊂ U1.
Then there exists v1 ∈ U1 such that v1 /∈ U2 and v2 ∈ U2 such that v2 /∈ U1. But then we have
v1 + v2 ∈ U1 ∪ U2, which implies that either (v1 + v2)− v1 ∈ U1 or (v1 + v2)− v2 ∈ U2, i.e. either
v2 ∈ U1 or v1 ∈ U2, which is a contradiction.

3) Assume that F has not characteristic 2. Prove that the union of three subspaces is a subspace if
and only if one of them contains the other two.

4) Exercises 16, 17 and 18 from §1C.

Solution. Notice that in class we argued that U1 + U2 = SpanU1 ∪ U2, since they are both the
smallest subspace of V containing U1 and U2. Thus, 16 and 17 follow from the fact that union of
sets is commutative and associative.

For 18: firstly, we notice that {0}+U = U for any subspace U ⊆ V , since {0} ⊆ U , so {0}+U =
{0} ∪ U = U . Secondly, for U ⊆ V if there exists W ⊆ V such that U +W = {0}, then we have
that U ⊆ {0}, which implies that U = {0}.

5) Prove of give a counterexample: suppose that V + U1 = V + U2 then U1 = U2.

Solution. This is false. Consider V = Span {e1, e2}, U1 = Span {e3}, and U2 = Span {e1 + e3}
inside F3. Here e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). We have that V +U1 = F3 = V +U2,
but clearly U1 ̸= U2.

6) Exercise 24 from §1C.

Solution. First we claim that Ve ⊕ V0 = RR. Indeed, let f : R → R be any element of RR we
define:

g1 := f(x) + f(−x) and g2 := f(x)− f(−x).

Notice that g1 ∈ Ve and g2 ∈ V0. Finally, we claim that Ve ∩ V0 = {0}. Indeed, if f(x) = f(−x) =
−f(x) for all x ∈ R, this implies that f(x) = 0 for all x ∈ R.

7) Exercise 3 from §2A.

Solution. We prove the result by induction. It is clearly true for n = 1.

Inductive step. Assume the result holds for n− 1. Then,

Span {v1, . . . , vn−1, vn} = Span {w1, . . . , wn−1, vn}.
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So it is enough to check that Span {w1, . . . , wn−1, vn} = Span {w1, . . . , wn−1, wn}. Since vn =
wn − wn−1 we have Span {w1, . . . , wn−1, vn} ⊆ Span {w1, . . . , wn−1, wn}. Since wn = vn − wn−1

we have Span {w1, . . . , wn−1, wn} ⊆ Span {w1, . . . , wn−1, vn}. This finishes the inductive set and
finishes the proof.

8) Exercise 7 from §2A.

Proof. (a) Assume that there exists a, b ∈ R such that a(1+i)+b(1−i) = 0. Then (a+b)+(a−b)i = 0
and since a complex number is zero if and only if both its real and imaginary part vanish, we have
a+ b = 0 and a− b = 0, whose only solution is a = b = 0.

(b) Assume that there exists a, b ∈ C such that a(1 + i) + b(1 − i) = 0. For instance we have
a = (1 − i) and b = −(1 + i) is a non-zero solution. So {1 + i, 1 − i} is not linearly independent
over C.

9) Exercises 15 and 16 form §2A.

Solution. 15: Assume that there are {v1, . . . , v6} ⊆ P4(F) which are linearly independent. Notice
that S = {1, x, x2, x3, x4} ⊂ P4(F) is a spanning set, i.e. SpanS = P4(F). By (2.22) from the
textbook we have 6 = |{v1, . . . , v6}| is smaller than or equal to |S| = 5. This is a contradiction.

16: Assume that there exist a list T = {v1, . . . , v4} such that SpanT = P4(F). Since S =
{1, x, x2, x3, x4} is linearly independent, again by (2.22) we should have |S| ≤ |T |, which is a
contradiction.
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