Math 2102: Worksheet 1 Solutions

1) Exercise 6 from §1B.

Solution. Consider $(2-1) \cdot \infty = 1 \cdot \infty = \infty$, however $2 \cdot \infty - 1 \cdot \infty = \infty + (-\infty) = 0$. So distributivity fails and $V = \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ is not a vector space.

2) Let $U_1, U_2 \subseteq V$ be two subspaces. Prove that $U_1 \cup U_2$ is a subspace if and only if $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$.

Solution. Assume that $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$, then we have $U_1 \cup U_2 = U_i \subseteq V$ for $i \in \{1, 2\}$, thus $U_1 \cup U_2$ is a subspace.

Now assume that $U_1 \cup U_2$ is a subspace and by contradiction assume that $U_1 \not\subset U_2$ and $U_2 \not\subset U_1$. Then there exists $v_1 \in U_1$ such that $v_1 \notin U_2$ and $v_2 \in U_2$ such that $v_2 \notin U_1$. But then we have $v_1 + v_2 \in U_1 \cup U_2$, which implies that either $(v_1 + v_2) - v_1 \in U_1$ or $(v_1 + v_2) - v_2 \in U_2$, i.e. either $v_2 \in U_1$ or $v_1 \in U_2$, which is a contradiction.

- 3) Assume that \mathbb{F} has not characteristic 2. Prove that the union of three subspaces is a subspace if and only if one of them contains the other two.
- 4) Exercises 16, 17 and 18 from §1C.

Solution. Notice that in class we argued that $U_1 + U_2 = \text{Span} U_1 \cup U_2$, since they are both the smallest subspace of V containing U_1 and U_2 . Thus, 16 and 17 follow from the fact that union of sets is commutative and associative.

For 18: firstly, we notice that $\{0\} + U = U$ for any subspace $U \subseteq V$, since $\{0\} \subseteq U$, so $\{0\} + U = \{0\} \cup U = U$. Secondly, for $U \subseteq V$ if there exists $W \subseteq V$ such that $U + W = \{0\}$, then we have that $U \subseteq \{0\}$, which implies that $U = \{0\}$.

5) Prove of give a counterexample: suppose that $V + U_1 = V + U_2$ then $U_1 = U_2$.

Solution. This is false. Consider $V = \text{Span} \{e_1, e_2\}$, $U_1 = \text{Span} \{e_3\}$, and $U_2 = \text{Span} \{e_1 + e_3\}$ inside \mathbb{F}^3 . Here $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, and $e_3 = (0, 0, 1)$. We have that $V + U_1 = \mathbb{F}^3 = V + U_2$, but clearly $U_1 \neq U_2$.

6) Exercise 24 from §1C.

Solution. First we claim that $V_e \oplus V_0 = \mathbb{R}^{\mathbb{R}}$. Indeed, let $f : \mathbb{R} \to \mathbb{R}$ be any element of $\mathbb{R}^{\mathbb{R}}$ we define:

$$g_1 := f(x) + f(-x)$$
 and $g_2 := f(x) - f(-x)$.

Notice that $g_1 \in V_e$ and $g_2 \in V_0$. Finally, we claim that $V_e \cap V_0 = \{0\}$. Indeed, if f(x) = f(-x) = -f(x) for all $x \in \mathbb{R}$, this implies that f(x) = 0 for all $x \in \mathbb{R}$.

7) Exercise 3 from §2A.

Solution. We prove the result by induction. It is clearly true for n = 1. Inductive step. Assume the result holds for n - 1. Then,

$$\operatorname{Span} \{ v_1, \dots, v_{n-1}, v_n \} = \operatorname{Span} \{ w_1, \dots, w_{n-1}, v_n \}.$$

So it is enough to check that $\operatorname{Span} \{w_1, \ldots, w_{n-1}, v_n\} = \operatorname{Span} \{w_1, \ldots, w_{n-1}, w_n\}$. Since $v_n = w_n - w_{n-1}$ we have $\operatorname{Span} \{w_1, \ldots, w_{n-1}, v_n\} \subseteq \operatorname{Span} \{w_1, \ldots, w_{n-1}, w_n\}$. Since $w_n = v_n - w_{n-1}$ we have $\operatorname{Span} \{w_1, \ldots, w_{n-1}, w_n\} \subseteq \operatorname{Span} \{w_1, \ldots, w_{n-1}, v_n\}$. This finishes the inductive set and finishes the proof.

8) Exercise 7 from §2A.

Proof. (a) Assume that there exists $a, b \in \mathbb{R}$ such that a(1+i)+b(1-i) = 0. Then (a+b)+(a-b)i = 0 and since a complex number is zero if and only if both its real and imaginary part vanish, we have a + b = 0 and a - b = 0, whose only solution is a = b = 0.

(b) Assume that there exists $a, b \in \mathbb{C}$ such that a(1+i) + b(1-i) = 0. For instance we have a = (1-i) and b = -(1+i) is a non-zero solution. So $\{1+i, 1-i\}$ is not linearly independent over \mathbb{C} .

9) Exercises 15 and 16 form §2A.

Solution. 15: Assume that there are $\{v_1, \ldots, v_6\} \subseteq \mathcal{P}_4(\mathbb{F})$ which are linearly independent. Notice that $S = \{1, x, x^2, x^3, x^4\} \subset \mathcal{P}_4(\mathbb{F})$ is a spanning set, i.e. Span $S = \mathcal{P}_4(\mathbb{F})$. By (2.22) from the textbook we have $6 = |\{v_1, \ldots, v_6\}|$ is smaller than or equal to |S| = 5. This is a contradiction.

16: Assume that there exist a list $T = \{v_1, \ldots, v_4\}$ such that $\text{Span } T = \mathcal{P}_4(\mathbb{F})$. Since $S = \{1, x, x^2, x^3, x^4\}$ is linearly independent, again by (2.22) we should have $|S| \leq |T|$, which is a contradiction.