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Math 2102: Worksheet 1

Solutions

Exercise 6 from §1B.

Solution. Consider (2 —1)-00 = 1-00 = 00, however 2-00 —1-00 = 0o + (—o0) = 0. So
distributivity fails and V.= R U {oo} U {—00} is not a vector space.

Let Uy,Us C V be two subspaces. Prove that U; U Uy is a subspace if and only if Uy C Uy or
U C Uy.

Solution. Assume that Uy C Uy or Uy C Uy, then we have Uy UUy = U; CV fori € {1,2}, thus
Ui UUs; is a subspace.

Now assume that Uy U Us is a subspace and by contradiction assume that Uy ¢ Us and Uy ¢ Uj.
Then there exists v € Uy such that vi ¢ Uy and ve € Uy such that vo ¢ Uy. But then we have
v1 + vy € Uy U Us, which implies that either (v1 + vy) — vy € Uy or (v1 + vg) — vg € Us, i.e. either
v € Uy or vy € Uy, which is a contradiction.

Assume that F has not characteristic 2. Prove that the union of three subspaces is a subspace if
and only if one of them contains the other two.

Exercises 16, 17 and 18 from §1C.

Solution. Notice that in class we argued that Uy + Uy = SpanUy U Us, since they are both the
smallest subspace of V' containing Uy and Us. Thus, 16 and 17 follow from the fact that union of
sets is commutative and associative.

For 18: firstly, we notice that {0} + U = U for any subspace U C V', since {0} C U, so {0} +U =
{0y UU =U. Secondly, for U CV if there exists W C V such that U + W = {0}, then we have
that U C {0}, which implies that U = {0}.

Prove of give a counterexample: suppose that V + U; =V + Us then Uy = Us.

Solution. This is false. Consider V = Span{ej,es}, Uy = Span{es}, and Uy = Span{e; + e3}
inside F3. Here e; = (1,0,0), ez = (0,1,0), and e3 = (0,0,1). We have that V+U; = F3 = V + Uy,
but clearly Uy # Us.

Exercise 24 from §1C.

Solution. First we claim that V, & Vo = RR. Indeed, let f : R — R be any element of RR we
define:

g1:=f(@)+ f(—z)  and  g2:= f(z) - f(—=).
Notice that g1 € Ve and g2 € Vy. Finally, we claim that Vo N Vo = {0}. Indeed, if f(z) = f(—z) =
—f(x) for all x € R, this implies that f(x) =0 for all x € R.

Exercise 3 from §2A.

Solution. We prove the result by induction. It is clearly true for n = 1.

Inductive step. Assume the result holds for n — 1. Then,

Span {vy,...,vp—1,0,} = Span{wi, ..., Wn—1,V,}.



So it is enough to check that Span{wi,..., wy_1,v,} = Span{wi,...,wy_1,wy}. Since v, =
Wy, — Wp—1 we have Span{wi,...,wp—1,v,} C Span{wi,...,wp_1,wy}. Since w, = vy, — Wp_1
we have Span{wi, ..., wy—1,w,} C Span{wi,...,wy_1,v,}. This finishes the inductive set and
finishes the proof.

Exercise 7 from §2A.

Proof. (a) Assume that there exists a,b € R such that a(14¢)+b(1—i) = 0. Then (a+b)+(a—b)i =0
and since a complex number is zero if and only if both its real and imaginary part vanish, we have
a+b=0and a — b= 0, whose only solution is a = b = 0.

(b) Assume that there exists a,b € C such that a(1l + i) + b(1 —¢) = 0. For instance we have
a=(1—1i)and b= —(141) is a non-zero solution. So {1+ i,1 — i} is not linearly independent
over C. 0

Exercises 15 and 16 form §2A.

Solution. 15: Assume that there are {v1,...,vs} C Py(F) which are linearly independent. Notice
that S = {1,z,22%, 23, 2%} C P4(F) is a spanning set, i.e. Span S = Py(F). By (2.22) from the
textbook we have 6 = |{v1,...,v6}| is smaller than or equal to |S| = 5. This is a contradiction.
16: Assume that there exist a list T = {v1,...,vs} such that SpanT = Py(F). Since S =
{1,2,2%, 23, 2%} is linearly independent, again by (2.22) we should have |S| < |T|, which is a
contradiction.



