
Math 2102 - Review problems
Solutions

May 14, 2024

• The exercises marked with (*) are the ones that I expect most of you to know how to solve
and you should expect similar level of question in the Final Exam.

• The exercises marked with (**) may be a bit more challenging or a bit of a digression. You
should not get caught up in them if you don’t know how to solve it.

• The exercises not marked I don’t feel particularly strong in either direction.

I. Basic concepts + Fundamental Theorem of Linear Algebra

I.1) Let V be a finite-dimensional vector space and consider subspaces U1, U2 ⊆ V .

(i) (**) Assume that dimU1 = dimU2. Prove that there exist a subspace W ⊆ V such
that U1 ⊕W = U2 ⊕W = V .

Solution:
First try:
Let {e1, . . . , ek} be a basis of U1 expand this to a basis {e1, . . . , ek, ek+1, . . . , en} of V .
Let W0 := Span {ek+1, . . . , en}. If dimU2 ∩W0 = 0, then by a dimension argument
we have V = U1 ⊕W0 = U2 ⊕W0 and we are done.
Assume that U2 ∩ W0 ̸= {0}. Let dimU2 ∩ W0 = l. Notice that this implies that
U1\U1∩U2 ̸= {0}. Indeed, otherwise U2 ⊆ U1 and we have U2∩W0 ⊆ U1∩W0 = {0}.
Let u1 ∈ U1\U1 ∩ U2, i.e. a non-zero vector in U1, which is not in U2. Consider
W1 := Span {ek+1 + u1, . . . , en + u1}. First we notice that {ek+1 + u1, . . . , en + u1}
are linearly independent. Indeed, if

∑n−k
i=1 ai(ek+i + u1) = 0 since W1 ∩ U = {0} we

obtain that
∑n−k

i=1 aiek+i = 0 and
∑n−k

i=1 aiu1 = 0, which gives that all ai’s vanish.
Since W1 ∩ U1 = {0}, we obtain that U1 ⊕W1 = V .
We now claim that

dimU2 ∩W1 = l − 1. (1)

Indeed, assume that
∑n−k

i=1 ai(ek+i + u1) ∈ U2, by the same argument as in the
previous paragraph, we have:

n−k∑
i=1

aiu1 ∈ U2 ⇒
n−k∑
i=1

aiu1 ∈ U2 ∩ U1 = {0}.

So we obtain
∑n−k

i=1 ai = 0. Notice that there are no other constraints on the ai’s,
thus we obtain (1).
Now let u2 ∈ U1\(U1 ∩U2 ∪ {u1}). Then we define W2 := Span {ek+1 + u1, . . . , en +
u1}. Here we are stuck in picking the next u2. This attempt failed but it
helped us understand what we need for the actual proof.
Second try: let {e1, . . . , ea} be a basis of U1∩U2, which we extend to {e1, . . . , ea, ea+1, . . . , ea+k}
a basis of U1. Let {e1, . . . , ea+k, ea+k+1, . . . , ea+k+l} be an extension to a basis of V .
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Consider W ′ := Span {ea+k+1, . . . , ea+k+l} notice that l = dimW ′∩U2 ≤ a+k−a =
k. Thus, we define:

W := Span {ea+k+1 + ea+1, ea+k+2 + ea+2, . . . , ea+k+l + ea+l}.

We claim that W ∩ U2 = {0}. Assume that we have
∑l

i=1 bi(ea+k+i + ea+i) ∈ U2.

Then since
∑l

i=1 ea+k+i ∈ W and
∑l

i=1 biea+i ∈ U1, we obtain that

l∑
i=1

biea+i =

k∑
i=1

ciei

for some ci’s, which implies that bi = 0 for all i ∈ {1, . . . , l}. Similarly, we obtain
that W ∩ U1 = {0}. Otherwise we have

∑l
i=1 bi(ea+k+i + ea+i) ∈ U1, which implies

that
∑l

i=1 biea+k+i =
∑a+k

i=1 ciei for some ci’s, which gives that bi = 0 for all i ∈
{1, . . . , l}.
Thus, we obtain that

W + U1 = W ⊕ U1 and W + U2 = W ⊕ U2

Since by construction we have dimW + dimU1 = dimV = a + k + l and dimW +
dimU2 = dimV , thus we conclude that W ⊕ U1 = V = W ⊕ U2.

(ii) Assume that dimUi ≤ m < dimV . Prove that there exist a subspace W ⊆ V of
dimension dimV −m such that W ∩ U1 = W ∩ U2 = {0}.

I.2) (*) Let U ⊆ V . Prove that there exist T, S ∈ L(V ) such that nullT = U and rangeS =
U .

Solution:
Let π : V → V/U denote the canonical map to the quotient space. We claim that
nullπ = U . Indeed, this is clear from the definition of V/U , since π(u) = u+U = 0+U .

Let U ⊕ W = V for some subspace W . This can always be done if one assumes the
axiom of choice. Let S : V → V be defined by S := IdU ⊕0. Then rangeS = U .

I.3) (*) Let V be an arbitrary vector space.

(i) Consider U ⊂ V a proper subspace, i.e. U ̸= V . Prove or disprove U is not isomor-
phic to V .

Solution:
This is false. Consider V = F[x] and let U = {

∑
i≥0 aix

2i | ai ∈ F}, i.e. U is the
subspace of polynomials where all non-zero terms are of even degree. We have an
isomorphism given on a basis of these vector spaces by

xi ∈ F[x] 7→ x2i ∈ U

for i ∈ N.

(ii) Assume that we have subspaces U1, U1,W1,W2 ⊆ V such that U1⊕W1 = U2⊕W2 =
V and that U1 ≃ U2, i.e. U1 and U2 are isomorphic. Prove or disprove W1 and W2

are isomorphic.
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Solution:
False. Consider V as in (i) and U1 = Span {x, x2, . . .} and U2 = Span {x2, x3, . . .}.
Then the map given on the basis by

xi ∈ U1 7→ xi+1 ∈ U2

for i ≥ 1, is an isomorphism. However, any W1 and W2 would satisfy W1 ≃ V/U1

and W2 ≃ V/U2, so
dimW1 = 1 and dimW2 = 2;

thus W1 ̸≃ W2.

I.4) (*) Let U ⊂ R8 be a subspace of dimension 3. Let T : R8 → R5 be a linear map such
that nullT = U . Prove that T is surjective.

Solution:
By the Fundamental theorem of linear algebra we have:

dimU = dimnullT + dim rangeU ⇒ dim rangeT = 8− 3 = 5.

Thus, rangeT ⊆ R5 and it has the same dimension, so it is the whole space.

I.5) (*) Let T : V → W be a linear map and V a finite-dimensional vector space. Prove that
there exist a subspace U ⊆ V such that:

nullT ∩ U = {0} and rangeT = {T (u) | u ∈ U}.

Solution:
Let {e1, . . . , ek} be a basis of nullT , which we extend to {e1, . . . , ek, ek+1, . . . , ek+l} a
basis of V . We claim that U := Span {ek+1, . . . , ek+l} satisfy the required conditions. It
is clear that nullT ∩ U = {0}, so we only need to prove that rangeT = {T (u) | u ∈ U}.
Let w ∈ rangeT , then w = T (v) for some v ∈ V . Let v =

∑k
i=1 aiei +

∑l
j=1 bjek+j for

some ai’s and bj’s. Since

T (v) = T (
k∑

i=1

aiei +

l∑
j=1

bjek+j) = T (
k∑

i=1

aiei) + T (
l∑

j=1

bjek+j) = T (
l∑

j=1

bjek+j).

So T (v) = T (u) for u =
∑l

j=1 bjek+j.

I.6) (*) Determine if the following are true or false and think of a brief explanation of why
that is the case.

(i) Let V be a vector space and {v1, v2, v3, v4, v5, v6} a basis of V . Consider U ⊆ V a
subspace. Then

U = (U ∩ Span {v1, v2})⊕ (U ∩ Span {v3})⊕ (U ∩ Span {v4, v5, v6}).

Solution:
False. Consider U = Span {v1 + v3} we directly check that

(U∩Span {v1, v2}) = {0}, (U∩Span {v3}) = {0}, and (U∩Span {v4, v5, v6}) = {0}.
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(ii) Let {u1, . . . , un} be a basis of V and {w1, . . . , wm} be a set of linearly independent
vectors in V with m ≤ n. There exist an unique T : V → V such that T (vi) = wi

for i ≤ m and T (vi) = 0 for i ≥ m+ 1. Moreover, T is invertible when n = m.

Solution:
True. This is a special case of Lemma 9. In fact, we don’t need to assume that
{w1, . . . , wm} is a linearly independent set.

(iii) Consider two linear maps T, S : V → W . Then nullT + nullS ⊆ null(T + S).

Solution:
False. Consider V = W and T = IdV and S = 0, then we have nullT = {0},
nullS = V and null(S + T ) = {0}.

(iv) Consider two linear maps T, S : V → W . Then nullT ∩ nullS ⊆ null(T + S).

Solution:
True. Let v ∈ nullT ∩ nullS, then (T + S)(v) = T (v) + S(v) = 0 + 0 = 0, thus
v ∈ null(T + S).

(v) Consider two linear maps T : U → V and S : V → W . Then

dim range(ST ) ≤ min{dim rangeT, dim rangeS}.

Solution:
Since if the ST is injective, we have that T is injective, this implies that nullT ⊆
nullST . By applying the Fundamental theorem of linear algebra to T and S we
obtain:

dimU − dim rangeT = dimnullT ≤ dimnullST = dimU − dim rangeST,

which gives dim rangeST ≤ dim rangeT .
Since if ST is surjective, then S is surjective, we have rangeST ⊆ rangeS; which
directly implies dim rangeST ≤ dim rangeS. Thus, we have the inequality claimed.

(vi) Consider two linear maps T, S : V → W . Then

dim range(T + S) = dim rangeT + dim rangeS.

Solution:
False. Consider V = W and T = IdV = −S. Then rangeT = rangeS = V , but
range(T + S) = {0}.

II. Matrix representations

II.1) (*) Let B1 = {v1, . . . , vn} and B2 = {u1, . . . , un} be two basis of V . Consider T : V → V
defined by Tvi = uk. Prove that

M(T,B1) = M(IdV , B2, B1).

II.2) (*) Many properties of an operator are not really reflected in its matrix representation.

(i) Give an example of an operator T whose matrix in some basis only has non-zero
elements in the diagonal, but T is not invertible.
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(ii) Give an example of an operator T whose matrix in some basis only has zero elements
in the diagonal, but T is invertible.

II.3) (*) Determine if the following are true or false and think of a brief explanation of why
that is the case.

(i) Let T : V → V be a linear operator and assume that there is a basis BV such that
M(T,BV ) only has zeros on the diagonal. Then T is not invertible.

(ii) Let V be a finite-dimensional inner product space and T : V → V an operator.
Assume that there exists a basis BV such that M(T,BV ) = M(T,BV )

†, i.e. the
matrix representing T is equal to its conjugate transpose, then T is self-adjoint.

(iii) Let V be a finite-dimensional inner product space and T : V → V an operator. As-
sume that there exists an orthonormal basis BV such that M(T,BV ) = M(T,BV )

†,
i.e. the matrix representing T is equal to its conjugate transpose, then T is self-
adjoint.

(iv) Let T : V → V and S : V → V be two operators, if M(T,BV ) = M(S,BV ) for
some basis BV , then T = S.

(v) There exists an invertible operator T : V → V on a finite-dimensional vector space
such that there exists a basis BV , such that M(T,BV ) is not invertible.

III. Quotients and Duals

III.1) (*) Let V be a finite-dimensional vector space and U1 ⊆ U2 two subspaces.

(i) Prove that there is a surjective linear map V/U1 → U/U2.

(ii) Prove that there is an injective linear map U2/U1 → V/U1.

(iii) Prove that dim(V/U1) = dim(U2/U1) + dim(V/U2).

III.2) (*) Let V be a vector space and U ⊆ V a subspace. Assume that U is finite-dimensional,
prove that V is isomorphic to U × V/U .

III.3) (*) Let U1, U2 ⊆ V be two subspaces, such that U1∩U2 = {0}. Prove that (U1⊕U2)
∨ ≃

U∨
1 ⊕ U∨

2 . Explain what the direct sum means on each side of the equation.

III.4) (**) Let V be a finite-dimensional vector space and consider λ1, λ2, λ3 ∈ V ∨. Consider
the following subspaces:

(1) Span {λ1, λ2, λ3};
(2) (nullλ1 ∩ nullλ2 ∩ nullλ3)

0;

(3) {λ ∈ V ∨ | nullλ1 ∩ nullλ2 ∩ nullλ3 ⊆ nullλ}.
Prove that these three subspaces are equal. Please state clearly what implications you
are proving at every step.

III.5) (*) Consider V a finite-dimensional vector space and let V ∨ be its dual vector space.
Let BV ∨ := {λ1, . . . , λn} be a basis of V ∨. Prove that there exists a basis of V such that
its dual basis is BV ∨ .

III.6) Consider V and W two finite-dimensional vector spaces.

(i) Prove that L(V,W ) → L(W∨, V ∨) given by T 7→ T∨ is an isomorphism of vector
spaces.

(ii) Prove that T is invertible if and only if T∨ is invertible.

III.7) (*) Determine if the following are true or false and think of a brief explanation of why
that is the case.

5



(i) For any vector space V and V ∨ are isomorphic.

(ii) One always has (V ×W )∨ ≃ V ∨ ×W∨.

(iii) For every T : V → W , there exists an unique factorization

V V/ nullT

W

T

π

S
,

i.e. an unique linear map S, such that the diagram above commutes.

(iv) Let U ⊆ V be a subspace such that both U and V are infinite-dimensional. Then
V/U is finite-dimensional.

IV. Invariant subspaces and Minimal Polynomial

IV.1) Let T ∈ L(V ) on a finite-dimensional vector space and assume that there exists v ∈ V
such that T 2v + 2Tv = −2v.

(i) Assume that F = R, then prove that there does not exists a basis of V such that
the matrix representing T in such a basis is upper-triangular.

(ii) Assume that F = C, then prove that if A is an upper-triangular matrix representing
T in some basis, then 1 + i and 1− i appear in the diagonal of A.

IV.2) (*) Let T ∈ L(V ) and {v1, . . . , vn} be a basis of V . Prove that the following are equiva-
lent:

(1) The matrix of T with respect to {v1, . . . , vn} is lower-triangular.

(2) Span {vk, . . . , vn} is invariant under T for every k ∈ {1, . . . , n}.
(3) Tvk ∈ Span {vk, . . . , vn} for every k ∈ {1, . . . , n}.
Prove that over C every operator has a basis with respect to which it is lower-triangular.

IV.3) (*) Let T : V → V be an operator on a finite-dimensional vector space. Prove that the
following are equivalent:

(1) V = nullT ⊕ rangeT ;

(2) nullT = nullT 2;

(3) (?) rangeT = rangeT 2;

(4) V = nullT + rangeT ;

(5) nullT ∩ rangeT = {0}.

Proof.

IV.4) Let V and W be finite-dimensional vector spaces and consider TV ∈ L(V ) and TW ∈
L(W ). Assume that the only TV -invariant subspaces of V are V and {0} and similarly
that the only TW -invariant subspaces of W are W and {0}. Let α : V → W be such
that α ◦ TV = TW ◦ α. Prove that α = 0 or α is an isomorphism.

IV.5) Let V be a finite-dimensional vector space. Prove that L(V ) has a basis consisting of
diagonalizable operators.

IV.6) Let V be a finite-dimensional vector space and T ∈ L(V ).
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(i) (*) Prove that
Span {v, . . . , Tmv} = Span {v, . . . , T dimV−1v}

for every m ≥ dimV − 1.

(ii) Prove that the minimal polynomial of T has degree at most 1 + dim rangeT .

(iii) Prove that T is invertible if and only if IdV ∈ Span {T, . . . , T dimV }.
IV.7) Determine if the following are true or false and think of a brief explanation of why that

is the case.

(i) (*) Let T, S : V → V be two operators such that TS = ST . Let v be an eigenvector
of T with eigenvalue λ. Then v is an eigenvector of S with eigenvalue λ.

(ii) Let {v1, . . . , vk} be a basis of rangeT then {Tv1, . . . , T vk} contains a basis of rangeT 2.

(iii) (*) Let {v1, . . . , vk} be a sequence of eigenvectors for distinct eigenvalues {λ1, . . . , λk},
consider α ∈ F such that α ̸= λi for every i ∈ {1, . . . , n}. If {v1, . . . , vk} are linearly
independent, then {(α− λ1)v1, . . . , (α− λk)vk} are linearly independent.

(iv) (*) Let T : V → V be an operator on a finite-dimensional vector space and assume
that T is not diagonalizable. Then T 2 is also not diagonalizable.

(v) (*) Let T : V → V be an operator on a complex finite-dimensional vector space.
Then T is diagonalizable if and only if there exists some positive k ≥ 1 such that
T k is diagonalizable.

(vi) Let T : V → V be a diagonalizable and U ⊆ V a subspace. Then T/U : V/U → V/U
the operator induced on the quotient is diagonalizable.

(vii) (*) Let T : V → V be a diagonalizable and U ⊆ V a T -invariant subspace. Then
T |U : U → U is diagonalizable.

(viii) Let T : V → V be an operator on a finite-dimensional vector space and U ⊆ V a
subspace such that T/U and T |U are diagonalizable. Then T is diagonalizable.

V. Inner Product and Spectral Theorem

V.1) Let T : V → V be an operator on a complex finite-dimensional vector space.

(i) (*) Suppose that T is normal and has real eigenvalues. Prove that T is self-adjoint.

(ii) (**) Show that any normal operator T is a product of S and R, where S is a self-
adjoint operator and R is an operator all of whose (possibly complex) eigenvalues
have absolute value 1.

V.2) Consider V = C4 with the standard inner product. Let U = Span {(1, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 1)}.
(i) Find an orthonormal basis for U .

(ii) Calculate PU : V → V the projection onto U .

(iii) (*) Is PU normal or self-adjoint? If so, what does the spectral theorem applied to
PU give?

V.3) Fix u, x ∈ V . Define T ∈ L(V ) by T (v) := ⟨v, u⟩x for every v ∈ V .

(i) Assume that V is a real inner product space. Prove that T is self-adjoint if and only
if u and x are linearly dependent.

(ii) Prove that T is normal if and only if u and x are linearly dependent.

V.4) (*) Let V be an inner product space and T ∈ L(V ).
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(i) Assume that V is a real inner product space. Prove that T is self-adjoint if and only
if (a) V = ⊕m

i=1E(λi, T ) and (b) all pairs of eigenvectors corresponding to different
eigenvalues are orthogonal.

(ii) Assume that V is a complex inner product space. Prove that T is normal if and only
if (a) V = ⊕m

i=1E(λi, T ) and (b) all pairs of eigenvectors corresponding to different
eigenvalues are orthogonal.

(iii) How do the statements above change if one requires only one of the two conditions
(a) or (b)?

V.5) Let T : U → V be a linear map between finite-dimensional inner product spaces.

(i) (*) Prove that
dimnullT − dimnullT ∗ = dimU − dimV.

(ii) (**) Let S : V → W be another linear map. Define R := TT ∗ + S∗S : V → V ,
assume that rangeT = nullS. Show that R is invertible.

V.6) (*) Determine if the following are true or false and think of a brief explanation of why
that is the case.

(i) Every orthogonal set is linearly independent.

(ii) Every orthonormal set is linearly independent.

(iii) Let T : V → V be an operator on a finite-dimensional inner product space and T ∗

its adjoint. Then v is an eigenvector of T if and only if v is an eigenvector of T ∗.

(iv) Let T : V → V be an operator on a finite-dimensional real inner product space,
such that V = nullT ⊕ rangeT , then T is self-adjoint.

(v) Let T : V → V be a normal operator on a finite-dimensional complex inner product
space, then V = nullT + rangeT .

VI. Generalized Eigenvalues and Eigenvectors, Jordan form

VI.1) (*) Let T ∈ L(V ), λ ∈ F and m ≥ 1 an integer.

(i) Prove that dimnullTm ≤ m dimnullT .

(ii) Is dimnull(T − λ IdV )
m ≥ m? What if you assume that (z − λ)m is a factor of the

minimal polynomial of T?

(iii) Can you formulate and prove similar claims to (i) and (ii) for rangeTm and range(T−
λ IdV )

m?

VI.2) (*) Let T : C6 → C6 be an operator with minimal polynomial pT (x) = (x− 2)2(x+ 1)2.

(i) Determine all possible Jordan forms of T .

(ii) Calculate the characteristic polynomial of each form in (i).

VI.3) Let p, q ∈ C[x] be two monic polynomials, with the same zeros and such that q is a
multiple of p. Prove that there exists T ∈ L(Cdeg q) such that cT = q and pT = p, i.e.
the characteristic polynomial of T is q and the minimal polynomial of T is p.

VI.4) Let F = C and T ∈ L(V ). Prove that the following are equivalent:

(1) there does not exist two non-zero T -invariant subspaces U,W ⊆ V such that V =
U ⊕W .

(2) the minimal polynomial of T is pT (z) = (z − λ)dimV , for some λ ∈ C.
What happens if F = R?
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VI.5) Consider the matrix:

Aϵ =

(
ϵ 0
1 0

)
.

(i) Calculate the Jordan canonical form of Aϵ when ϵ ̸= 0.

(ii) Calculate the Jordan canonical form of Aϵ when ϵ = 0.

VI.6) (*) Determine if the following are true or false and think of a brief explanation of why
that is the case.

(i) Given S, T ∈ L(V ) two nilpotent operators, then ST is nilpotent.

(ii) Let T ∈ L(V ) be nilpotent and diagonalizable, then T = 0.

(iii) Given S, T ∈ L(V ) two nilpotent operators, then S + T is nilpotent.

(iv) Given S, T ∈ L(V ) two nilpotent operators such that ST = TS, then S+T and ST
are nilpotent.

(v) Let T ∈ L(V ), assume that there exists BV a basis of V such that M(T,BV ) is a
diagonal matrix. Then for any Jordan basis B′

V the matrix M(T,B′
V ) is diagonal.

(vi) Let T ∈ L(V ) on a complex vector space and consider BV and B′
V two different

Jordan basis. Then M(T,BV ) and M(T,B′
V ) can have a different number of blocks

in its diagonal form.

VII. Tensor Product, Determinant, and Trace

VII.1) (*) Let {v1, . . . , vn} ⊂ V and {w1, . . . , wn} ⊂ W be two lists of vectors.

(i) Assume that {v1, . . . , vn} are linearly independent and that v1⊗w1+· · ·+vn⊗wn = 0.
Prove that w1 = · · · = wn = 0.

(ii) Let n = 3, give an example to show that (i) fails if {v1, . . . , vn} is not linearly
independent.

(iii) Assume that dimV > 1 and dimW > 1. Prove that {v ⊗ w | v ∈ V, w ∈ W} ̸=
V ⊗W .

(iv) Explain why the condition on the dimensions of V and W in (iii)) is necessary.

VII.2) (*) Let V be a real vector space and T ∈ L(V ).

(i) Assume that T has no eigenvalues, prove that detT > 0.

(ii) Assume that dimV is even and that detT < 0. Prove that T has at least two
distinct eigenvalues.

VII.3) Let V be an inner product space and T ∈ P(V ).

(i) Prove that trT = trT ∗.

(ii) Assume that T 2 = T . Prove that trT = dim rangeT .

VII.4) Let T ∈ L(V ) on a finite-dimensional vector space.

(i) Consider T∨ ∈ L(V ∨) the dual operator determined by T . Prove that detT =
detT∨.

(ii) Assume that V is an inner product space. Prove that detT ∗ = detT , where T ∗ ∈
L(V ) is the adjoint operator.

VII.5) (*) Consider f : V1 → V2 and g : U1 → U2 linear maps between finite-dimensional vector
spaces.

(i) Assume that f and g are surjective, prove that f ⊗ g is surjective.
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(ii) Assume that f and g are injective, prove that f ⊗ g is injective.

VII.6) (*) Determine if the following are true or false and think of a brief explanation of why
that is the case.

(i) Let T, S ∈ L(V ) be two operators on a finite-dimensional vector space. Then
tr(TS) = tr(T ) tr(S).

(ii) Let V be a finite-dimensional vector space. There exist T, S ∈ L(V ) such that
ST − TS = IdV .

(iii) Let T ∈ L(V ) be an operator on a finite-dimensional vector space. Assume that
tr(TS) = 0 for all S ∈ L(V ), then T = 0.

(iv) Consider U, V,W then (U ⊕ V )⊗W ≃ U ⊗W ⊕ V ⊗W .

(v) Assume that T is nilpotent, then det(Id+T ) = 1.

(vi) Let T, S ∈ L(V ) be two operators on a finite-dimensional vector space. Then det(T+
S) = det(T ) + det(S).
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