Math 2102 - Review problems Solutions May 14, 2024

- The exercises marked with $(*)$ are the ones that I expect most of you to know how to solve and you should expect similar level of question in the Final Exam.
- The exercises marked with (**) may be a bit more challenging or a bit of a digression. You should not get caught up in them if you don't know how to solve it.
- The exercises not marked I don't feel particularly strong in either direction.

I. Basic concepts + Fundamental Theorem of Linear Algebra

- I.1) Let V be a finite-dimensional vector space and consider subspaces $U_1, U_2 \subseteq V$.
	- (i) (**) Assume that dim $U_1 = \dim U_2$. Prove that there exist a subspace $W \subseteq V$ such that $U_1 \oplus W = U_2 \oplus W = V$.

Solution:

First try:

Let $\{e_1, \ldots, e_k\}$ be a basis of U_1 expand this to a basis $\{e_1, \ldots, e_k, e_{k+1}, \ldots, e_n\}$ of V. Let $W_0 := \text{Span} \{e_{k+1}, \ldots, e_n\}$. If $\dim U_2 \cap W_0 = 0$, then by a dimension argument we have $V = U_1 \oplus W_0 = U_2 \oplus W_0$ and we are done.

Assume that $U_2 \cap W_0 \neq \{0\}$. Let $\dim U_2 \cap W_0 = l$. Notice that this implies that $U_1 \setminus U_1 \cap U_2 \neq \{0\}.$ Indeed, otherwise $U_2 \subseteq U_1$ and we have $U_2 \cap W_0 \subseteq U_1 \cap W_0 = \{0\}.$ Let $u_1 \in U_1 \backslash U_1 \cap U_2$, i.e. a non-zero vector in U_1 , which is not in U_2 . Consider $W_1 := \text{Span} \{e_{k+1} + u_1, \ldots, e_n + u_1\}.$ First we notice that $\{e_{k+1} + u_1, \ldots, e_n + u_1\}$ are linearly independent. Indeed, if $\sum_{i=1}^{n-k} a_i(e_{k+i} + u_1) = 0$ since $W_1 \cap U = \{0\}$ we obtain that $\sum_{i=1}^{n-k} a_i e_{k+i} = 0$ and $\sum_{i=1}^{n-k} a_i u_1 = 0$, which gives that all a_i 's vanish. Since $W_1 \cap U_1 = \{0\}$, we obtain that $U_1 \oplus W_1 = V$. We now claim that

$$
\dim U_2 \cap W_1 = l - 1. \tag{1}
$$

Indeed, assume that $\sum_{i=1}^{n-k} a_i(e_{k+i} + u_1) \in U_2$, by the same argument as in the previous paragraph, we have:

$$
\sum_{i=1}^{n-k} a_i u_1 \in U_2 \implies \sum_{i=1}^{n-k} a_i u_1 \in U_2 \cap U_1 = \{0\}.
$$

So we obtain $\sum_{i=1}^{n-k} a_i = 0$. Notice that there are no other constraints on the a_i 's, thus we obtain (1) .

Now let $u_2 \in U_1 \setminus (U_1 \cap U_2 \cup \{u_1\})$. Then we define $W_2 := \text{Span } \{e_{k+1} + u_1, \ldots, e_n + \}$ u_1 . Here we are stuck in picking the next u_2 . This attempt failed but it helped us understand what we need for the actual proof.

Second try: let $\{e_1, \ldots, e_a\}$ be a basis of $U_1 \cap U_2$, which we extend to $\{e_1, \ldots, e_a, e_{a+1}, \ldots, e_{a+k}\}$ a basis of U_1 . Let $\{e_1, \ldots, e_{a+k}, e_{a+k+1}, \ldots, e_{a+k+l}\}$ be an extension to a basis of V.

Consider $W' := \text{Span} \{e_{a+k+1}, \ldots, e_{a+k+l}\}\$ notice that $l = \dim W' \cap U_2 \le a+k-a$ k. Thus, we define:

$$
W := \mathrm{Span}\{e_{a+k+1} + e_{a+1}, e_{a+k+2} + e_{a+2}, \dots, e_{a+k+l} + e_{a+l}\}.
$$

We claim that $W \cap U_2 = \{0\}$. Assume that we have $\sum_{i=1}^{l} b_i (e_{a+k+i} + e_{a+i}) \in U_2$. Then since $\sum_{i=1}^{l} e_{a+k+i} \in W$ and $\sum_{i=1}^{l} b_i e_{a+i} \in U_1$, we obtain that

$$
\sum_{i=1}^{l} b_i e_{a+i} = \sum_{i=1}^{k} c_i e_i
$$

for some c_i 's, which implies that $b_i = 0$ for all $i \in \{1, \ldots, l\}$. Similarly, we obtain that $W \cap U_1 = \{0\}$. Otherwise we have $\sum_{i=1}^{l} b_i(e_{a+k+i} + e_{a+i}) \in U_1$, which implies that $\sum_{i=1}^{l} b_i e_{a+k+i} = \sum_{i=1}^{a+k} c_i e_i$ for some c_i 's, which gives that $b_i = 0$ for all $i \in$ $\{1,\ldots,l\}.$

Thus, we obtain that

$$
W + U_1 = W \oplus U_1 \quad and \quad W + U_2 = W \oplus U_2
$$

Since by construction we have dim $W + \dim U_1 = \dim V = a + k + l$ and $\dim W + l$ $\dim U_2 = \dim V$, thus we conclude that $W \oplus U_1 = V = W \oplus U_2$.

- (ii) Assume that dim $U_i \leq m < \dim V$. Prove that there exist a subspace $W \subseteq V$ of dimension dim $V - m$ such that $W \cap U_1 = W \cap U_2 = \{0\}.$
- I.2) (*) Let $U \subseteq V$. Prove that there exist $T, S \in \mathcal{L}(V)$ such that null $T = U$ and range $S =$ U.

Solution:

Let $\pi : V \to V/U$ denote the canonical map to the quotient space. We claim that null $\pi = U$. Indeed, this is clear from the definition of V/U , since $\pi(u) = u + U = 0 + U$. Let $U \oplus W = V$ for some subspace W. This can always be done if one assumes the axiom of choice. Let $S: V \to V$ be defined by $S := \mathrm{Id}_U \oplus 0$. Then range $S = U$.

- I.3) $(*)$ Let V be an arbitrary vector space.
	- (i) Consider $U \subset V$ a proper subspace, i.e. $U \neq V$. Prove or disprove U is not isomorphic to V .

Solution:

This is false. Consider $V = \mathbb{F}[x]$ and let $U = \{\sum_{i\geq 0} a_i x^{2i} \mid a_i \in \mathbb{F}\},\ i.e.\ U$ is the subspace of polynomials where all non-zero terms are of even degree. We have an isomorphism given on a basis of these vector spaces by

$$
x^i\in\mathbb F[x]\mapsto x^{2i}\in U
$$

for $i \in \mathbb{N}$.

(ii) Assume that we have subspaces $U_1, U_1, W_1, W_2 \subseteq V$ such that $U_1 \oplus W_1 = U_2 \oplus W_2 =$ V and that $U_1 \simeq U_2$, i.e. U_1 and U_2 are isomorphic. Prove or disprove W_1 and W_2 are isomorphic.

Solution:

False. Consider V as in (i) and $U_1 = \text{Span} \{x, x^2, \ldots\}$ and $U_2 = \text{Span} \{x^2, x^3, \ldots\}$. Then the map given on the basis by

$$
x^i \in U_1 \mapsto x^{i+1} \in U_2
$$

for $i \geq 1$, is an isomorphism. However, any W_1 and W_2 would satisfy $W_1 \simeq V/U_1$ and $W_2 \simeq V/U_2$, so

$$
\dim W_1 = 1 \quad and \quad \dim W_2 = 2;
$$

thus $W_1 \not\simeq W_2$.

I.4) (*) Let $U \subset \mathbb{R}^8$ be a subspace of dimension 3. Let $T : \mathbb{R}^8 \to \mathbb{R}^5$ be a linear map such that null $T = U$. Prove that T is surjective.

Solution:

By the Fundamental theorem of linear algebra we have:

$$
\dim U = \dim \operatorname{null} T + \dim \operatorname{range} U \implies \dim \operatorname{range} T = 8 - 3 = 5.
$$

Thus, range $T \subseteq \mathbb{R}^5$ and it has the same dimension, so it is the whole space.

I.5) (*) Let $T: V \to W$ be a linear map and V a finite-dimensional vector space. Prove that there exist a subspace $U \subseteq V$ such that:

$$
\text{null } T \cap U = \{0\} \text{ and } \text{range } T = \{T(u) \mid u \in U\}.
$$

Solution:

Let $\{e_1, \ldots, e_k\}$ be a basis of null T, which we extend to $\{e_1, \ldots, e_k, e_{k+1}, \ldots, e_{k+l}\}\$ a basis of V. We claim that $U := \text{Span}\{e_{k+1}, \ldots, e_{k+l}\}\$ satisfy the required conditions. It is clear that null $T \cap U = \{0\}$, so we only need to prove that range $T = \{T(u) \mid u \in U\}$. Let $w \in \text{range } T$, then $w = T(v)$ for some $v \in V$. Let $v = \sum_{i=1}^{k} a_i e_i + \sum_{j=1}^{l} b_j e_{k+j}$ for some a_i 's and b_j 's. Since

$$
T(v) = T(\sum_{i=1}^{k} a_i e_i + \sum_{j=1}^{l} b_j e_{k+j}) = T(\sum_{i=1}^{k} a_i e_i) + T(\sum_{j=1}^{l} b_j e_{k+j}) = T(\sum_{j=1}^{l} b_j e_{k+j}).
$$

So $T(v) = T(u)$ for $u = \sum_{j=1}^{l} b_j e_{k+j}$.

- I.6) (*) Determine if the following are true or false and think of a brief explanation of why that is the case.
	- (i) Let V be a vector space and $\{v_1, v_2, v_3, v_4, v_5, v_6\}$ a basis of V. Consider $U \subseteq V$ a subspace. Then

 $U = (U \cap \text{Span}\{v_1, v_2\}) \oplus (U \cap \text{Span}\{v_3\}) \oplus (U \cap \text{Span}\{v_4, v_5, v_6\}).$

Solution:

False. Consider $U = \text{Span}\{v_1 + v_3\}$ we directly check that

$$
(U \cap \text{Span } \{v_1, v_2\}) = \{0\}, \ \ (U \cap \text{Span } \{v_3\}) = \{0\}, \ \text{and } (U \cap \text{Span } \{v_4, v_5, v_6\}) = \{0\}.
$$

(ii) Let $\{u_1, \ldots, u_n\}$ be a basis of V and $\{w_1, \ldots, w_m\}$ be a set of linearly independent vectors in V with $m \leq n$. There exist an unique $T: V \to V$ such that $T(v_i) = w_i$ for $i \leq m$ and $T(v_i) = 0$ for $i \geq m+1$. Moreover, T is invertible when $n = m$.

Solution:

True. This is a special case of Lemma 9. In fact, we don't need to assume that $\{w_1, \ldots, w_m\}$ is a linearly independent set.

(iii) Consider two linear maps $T, S: V \to W$. Then null $T + \text{null } S \subseteq \text{null}(T + S)$.

Solution:

False. Consider $V = W$ and $T = \text{Id}_V$ and $S = 0$, then we have null $T = \{0\}$, null $S = V$ and null $(S + T) = \{0\}.$

(iv) Consider two linear maps $T, S: V \to W$. Then null $T \cap \text{null } S \subseteq \text{null}(T + S)$.

Solution:

True. Let $v \in \text{null } T \cap \text{null } S$, then $(T + S)(v) = T(v) + S(v) = 0 + 0 = 0$, thus $v \in null(T + S)$.

(v) Consider two linear maps $T: U \to V$ and $S: V \to W$. Then

 $\dim \text{range}(ST) \leq \min \{\dim \text{range } T, \dim \text{range } S\}.$

Solution:

Since if the ST is injective, we have that T is injective, this implies that null $T \subseteq$ null $ST.$ By applying the Fundamental theorem of linear algebra to T and S we obtain:

 $\dim U - \dim \operatorname{range} T = \dim \operatorname{null} T \leq \dim \operatorname{null} ST = \dim U - \dim \operatorname{range} ST$,

which gives dim range $ST \leq \dim \operatorname{range} T$.

Since if ST is surjective, then S is surjective, we have range $ST \subseteq \text{range } S$; which directly implies dim range $ST \leq$ dim range S. Thus, we have the inequality claimed.

(vi) Consider two linear maps $T, S: V \to W$. Then

 $\dim \text{range}(T + S) = \dim \text{range} T + \dim \text{range} S.$

Solution:

False. Consider $V = W$ and $T = \text{Id}_V = -S$. Then range $T = \text{range } S = V$, but range $(T + S) = \{0\}.$

II. Matrix representations

II.1) (*) Let $B_1 = \{v_1, \ldots, v_n\}$ and $B_2 = \{u_1, \ldots, u_n\}$ be two basis of V. Consider $T: V \to V$ defined by $Tv_i = u_k$. Prove that

$$
\mathcal{M}(T, B_1) = \mathcal{M}(\mathrm{Id}_V, B_2, B_1).
$$

- II.2) (*) Many properties of an operator are not really reflected in its matrix representation.
	- (i) Give an example of an operator T whose matrix in some basis only has non-zero elements in the diagonal, but T is not invertible.
- (ii) Give an example of an operator T whose matrix in some basis only has zero elements in the diagonal, but T is invertible.
- II.3) (*) Determine if the following are true or false and think of a brief explanation of why that is the case.
	- (i) Let $T: V \to V$ be a linear operator and assume that there is a basis B_V such that $\mathcal{M}(T, B_V)$ only has zeros on the diagonal. Then T is not invertible.
	- (ii) Let V be a finite-dimensional inner product space and $T: V \to V$ an operator. Assume that there exists a basis B_V such that $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V)^{\dagger}$, i.e. the matrix representing T is equal to its conjugate transpose, then T is self-adjoint.
	- (iii) Let V be a finite-dimensional inner product space and $T: V \to V$ an operator. Assume that there exists an *orthonormal basis* B_V such that $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V)^{\dagger}$, i.e. the matrix representing T is equal to its conjugate transpose, then T is selfadjoint.
	- (iv) Let $T: V \to V$ and $S: V \to V$ be two operators, if $\mathcal{M}(T, B_V) = \mathcal{M}(S, B_V)$ for some basis B_V , then $T = S$.
	- (v) There exists an invertible operator $T: V \to V$ on a finite-dimensional vector space such that there exists a basis B_V , such that $\mathcal{M}(T, B_V)$ is not invertible.

III. Quotients and Duals

- III.1) (*) Let V be a finite-dimensional vector space and $U_1 \subseteq U_2$ two subspaces.
	- (i) Prove that there is a surjective linear map $V/U_1 \rightarrow U/U_2$.
	- (ii) Prove that there is an injective linear map $U_2/U_1 \rightarrow V/U_1$.
	- (iii) Prove that $\dim(V/U_1) = \dim(U_2/U_1) + \dim(V/U_2)$.
- III.2) (*) Let V be a vector space and $U \subseteq V$ a subspace. Assume that U is finite-dimensional, prove that V is isomorphic to $U \times V/U$.
- III.3) (*) Let $U_1, U_2 \subseteq V$ be two subspaces, such that $U_1 \cap U_2 = \{0\}$. Prove that $(U_1 \oplus U_2)^{\vee} \simeq$ $U_1^{\vee} \oplus U_2^{\vee}$. Explain what the direct sum means on each side of the equation.
- III.4) (**) Let V be a finite-dimensional vector space and consider $\lambda_1, \lambda_2, \lambda_3 \in V^{\vee}$. Consider the following subspaces:
	- (1) Span $\{\lambda_1, \lambda_2, \lambda_3\};$
	- (2) (null $\lambda_1 \cap \text{null } \lambda_2 \cap \text{null } \lambda_3)^0$;
	- (3) $\{\lambda \in V^{\vee} \mid \text{null } \lambda_1 \cap \text{null } \lambda_2 \cap \text{null } \lambda_3 \subseteq \text{null } \lambda\}.$

Prove that these three subspaces are equal. Please state clearly what implications you are proving at every step.

- III.5) (*) Consider V a finite-dimensional vector space and let V^{\vee} be its dual vector space. Let $B_{V} \nightharpoonup = {\lambda_1, \ldots, \lambda_n}$ be a basis of V^{\vee} . Prove that there exists a basis of V such that its dual basis is $B_V \vee$.
- III.6) Consider V and W two finite-dimensional vector spaces.
	- (i) Prove that $\mathcal{L}(V, W) \to \mathcal{L}(W^{\vee}, V^{\vee})$ given by $T \mapsto T^{\vee}$ is an isomorphism of vector spaces.
	- (ii) Prove that T is invertible if and only if T^{\vee} is invertible.
- III.7) (*) Determine if the following are true or false and think of a brief explanation of why that is the case.
- (i) For any vector space V and V^{\vee} are isomorphic.
- (ii) One always has $(V \times W)^{\vee} \simeq V^{\vee} \times W^{\vee}$.
- (iii) For every $T: V \to W$, there exists an unique factorization

i.e. an unique linear map S, such that the diagram above commutes.

(iv) Let $U \subseteq V$ be a subspace such that both U and V are infinite-dimensional. Then V/U is finite-dimensional.

IV. Invariant subspaces and Minimal Polynomial

- IV.1) Let $T \in \mathcal{L}(V)$ on a finite-dimensional vector space and assume that there exists $v \in V$ such that $T^2v + 2Tv = -2v$.
	- (i) Assume that $\mathbb{F} = \mathbb{R}$, then prove that there does not exists a basis of V such that the matrix representing T in such a basis is upper-triangular.
	- (ii) Assume that $\mathbb{F} = \mathbb{C}$, then prove that if A is an upper-triangular matrix representing T in some basis, then $1 + i$ and $1 - i$ appear in the diagonal of A.
- IV.2) (*) Let $T \in \mathcal{L}(V)$ and $\{v_1, \ldots, v_n\}$ be a basis of V. Prove that the following are equivalent:
	- (1) The matrix of T with respect to $\{v_1, \ldots, v_n\}$ is lower-triangular.
	- (2) Span $\{v_k, \ldots, v_n\}$ is invariant under T for every $k \in \{1, \ldots, n\}$.
	- (3) $Tv_k \in \text{Span } \{v_k, \ldots, v_n\}$ for every $k \in \{1, \ldots, n\}.$

Prove that over C every operator has a basis with respect to which it is lower-triangular.

- IV.3) (*) Let $T: V \to V$ be an operator on a finite-dimensional vector space. Prove that the following are equivalent:
	- (1) $V = \text{null } T \oplus \text{range } T;$
	- (2) null $T = \text{null } T^2$;
	- (3) (?) range $T = \text{range } T^2$;
	- (4) $V = \text{null } T + \text{range } T;$
	- (5) null $T \cap \text{range } T = \{0\}.$

Proof.

IV.4) Let V and W be finite-dimensional vector spaces and consider $T_V \in \mathcal{L}(V)$ and $T_W \in$ $\mathcal{L}(W)$. Assume that the only T_V-invariant subspaces of V are V and $\{0\}$ and similarly that the only T_W -invariant subspaces of W are W and $\{0\}$. Let $\alpha: V \to W$ be such that $\alpha \circ T_V = T_W \circ \alpha$. Prove that $\alpha = 0$ or α is an isomorphism.

 \Box

- IV.5) Let V be a finite-dimensional vector space. Prove that $\mathcal{L}(V)$ has a basis consisting of diagonalizable operators.
- IV.6) Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$.

(i) (*) Prove that

Span $\{v, \ldots, T^{m}v\} =$ Span $\{v, \ldots, T^{\dim V - 1}v\}$

for every $m \geq \dim V - 1$.

- (ii) Prove that the minimal polynomial of T has degree at most $1 + \dim \operatorname{range} T$.
- (iii) Prove that T is invertible if and only if $\mathrm{Id}_V \in \mathrm{Span} \{T, \ldots, T^{\dim V}\}.$
- IV.7) Determine if the following are true or false and think of a brief explanation of why that is the case.
	- (i) (*) Let $T, S: V \to V$ be two operators such that $TS = ST$. Let v be an eigenvector of T with eigenvalue λ . Then v is an eigenvector of S with eigenvalue λ .
	- (ii) Let $\{v_1, \ldots, v_k\}$ be a basis of range T then $\{Tv_1, \ldots, Tv_k\}$ contains a basis of range T^2 .
	- (iii) (*) Let $\{v_1, \ldots, v_k\}$ be a sequence of eigenvectors for distinct eigenvalues $\{\lambda_1, \ldots, \lambda_k\},$ consider $\alpha \in \mathbb{F}$ such that $\alpha \neq \lambda_i$ for every $i \in \{1, \ldots, n\}$. If $\{v_1, \ldots, v_k\}$ are linearly independent, then $\{(\alpha - \lambda_1)v_1, \ldots, (\alpha - \lambda_k)v_k\}$ are linearly independent.
	- (iv) (*) Let $T: V \to V$ be an operator on a finite-dimensional vector space and assume that T is not diagonalizable. Then T^2 is also not diagonalizable.
	- (v) (*) Let $T: V \to V$ be an operator on a *complex* finite-dimensional vector space. Then T is diagonalizable if and only if there exists some positive $k \geq 1$ such that T^k is diagonalizable.
	- (vi) Let $T: V \to V$ be a diagonalizable and $U \subseteq V$ a subspace. Then $T/U: V/U \to V/U$ the operator induced on the quotient is diagonalizable.
	- (vii) (*) Let $T: V \to V$ be a diagonalizable and $U \subseteq V$ a T-invariant subspace. Then $T|_U: U \to U$ is diagonalizable.
	- (viii) Let $T: V \to V$ be an operator on a finite-dimensional vector space and $U \subseteq V$ a subspace such that T/U and $T|_U$ are diagonalizable. Then T is diagonalizable.

V. Inner Product and Spectral Theorem

- V.1) Let $T: V \to V$ be an operator on a complex finite-dimensional vector space.
	- (i) (*) Suppose that T is normal and has real eigenvalues. Prove that T is self-adjoint.
	- (ii) $(**)$ Show that any normal operator T is a product of S and R, where S is a selfadjoint operator and R is an operator all of whose (possibly complex) eigenvalues have absolute value 1.
- V.2) Consider $V = \mathbb{C}^4$ with the standard inner product. Let $U = \text{Span} \{ (1, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 1) \}.$
	- (i) Find an orthonormal basis for U.
	- (ii) Calculate $P_U : V \to V$ the projection onto U.
	- (iii) (*) Is P_U normal or self-adjoint? If so, what does the spectral theorem applied to P_U give?
- V.3) Fix $u, x \in V$. Define $T \in \mathcal{L}(V)$ by $T(v) := \langle v, u \rangle x$ for every $v \in V$.
	- (i) Assume that V is a real inner product space. Prove that T is self-adjoint if and only if u and x are linearly dependent.
	- (ii) Prove that T is normal if and only if u and x are linearly dependent.
- V.4) (*) Let V be an inner product space and $T \in \mathcal{L}(V)$.
- (i) Assume that V is a real inner product space. Prove that T is self-adjoint if and only if (a) $V = \bigoplus_{i=1}^{m} E(\lambda_i, T)$ and (b) all pairs of eigenvectors corresponding to different eigenvalues are orthogonal.
- (ii) Assume that V is a complex inner product space. Prove that T is normal if and only if (a) $V = \bigoplus_{i=1}^{m} E(\lambda_i, T)$ and (b) all pairs of eigenvectors corresponding to different eigenvalues are orthogonal.
- (iii) How do the statements above change if one requires only one of the two conditions (a) or (b)?
- V.5) Let $T: U \to V$ be a linear map between finite-dimensional inner product spaces.
	- (i) (*) Prove that

 $\dim \text{null } T - \dim \text{null } T^* = \dim U - \dim V.$

- (ii) $(*^*)$ Let $S: V \to W$ be another linear map. Define $R := TT^* + S^*S : V \to V$, assume that range $T = \text{null } S$. Show that R is invertible.
- V.6) (*) Determine if the following are true or false and think of a brief explanation of why that is the case.
	- (i) Every orthogonal set is linearly independent.
	- (ii) Every orthonormal set is linearly independent.
	- (iii) Let $T: V \to V$ be an operator on a finite-dimensional inner product space and T^* its adjoint. Then v is an eigenvector of T if and only if v is an eigenvector of T^* .
	- (iv) Let $T: V \to V$ be an operator on a finite-dimensional real inner product space, such that $V = \text{null } T \oplus \text{range } T$, then T is self-adjoint.
	- (v) Let $T: V \to V$ be a normal operator on a finite-dimensional complex inner product space, then $V = \text{null } T + \text{range } T$.

VI. Generalized Eigenvalues and Eigenvectors, Jordan form

- VI.1) (*) Let $T \in \mathcal{L}(V)$, $\lambda \in \mathbb{F}$ and $m \geq 1$ an integer.
	- (i) Prove that dim null $T^m \leq m \dim \text{null } T$.
	- (ii) Is dim null $(T \lambda \operatorname{Id}_V)^m \ge m$? What if you assume that $(z \lambda)^m$ is a factor of the minimal polynomial of T?
	- (iii) Can you formulate and prove similar claims to (i) and (ii) for range T^m and range $(T \lambda \, \mathrm{Id}_V)^m$?
- VI.2) (*) Let $T: \mathbb{C}^6 \to \mathbb{C}^6$ be an operator with minimal polynomial $p_T(x) = (x-2)^2(x+1)^2$.
	- (i) Determine all possible Jordan forms of T.
	- (ii) Calculate the characteristic polynomial of each form in (i).
- VI.3) Let $p, q \in \mathbb{C}[x]$ be two monic polynomials, with the same zeros and such that q is a multiple of p. Prove that there exists $T \in \mathcal{L}(\mathbb{C}^{\deg q})$ such that $c_T = q$ and $p_T = p$, i.e. the characteristic polynomial of T is q and the minimal polynomial of T is p .
- VI.4) Let $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Prove that the following are equivalent:
	- (1) there does not exist two non-zero T-invariant subspaces $U, W \subseteq V$ such that $V =$ $U \oplus W$.
	- (2) the minimal polynomial of T is $p_T(z) = (z \lambda)^{\dim V}$, for some $\lambda \in \mathbb{C}$.

What happens if $\mathbb{F} = \mathbb{R}$?

VI.5) Consider the matrix:

$$
A_{\epsilon} = \begin{pmatrix} \epsilon & 0 \\ 1 & 0 \end{pmatrix}.
$$

- (i) Calculate the Jordan canonical form of A_{ϵ} when $\epsilon \neq 0$.
- (ii) Calculate the Jordan canonical form of A_{ϵ} when $\epsilon = 0$.
- VI.6) (*) Determine if the following are true or false and think of a brief explanation of why that is the case.
	- (i) Given $S, T \in \mathcal{L}(V)$ two nilpotent operators, then ST is nilpotent.
	- (ii) Let $T \in \mathcal{L}(V)$ be nilpotent and diagonalizable, then $T = 0$.
	- (iii) Given $S, T \in \mathcal{L}(V)$ two nilpotent operators, then $S + T$ is nilpotent.
	- (iv) Given $S, T \in \mathcal{L}(V)$ two nilpotent operators such that $ST = TS$, then $S + T$ and ST are nilpotent.
	- (v) Let $T \in \mathcal{L}(V)$, assume that there exists B_V a basis of V such that $\mathcal{M}(T, B_V)$ is a diagonal matrix. Then for any Jordan basis B_V' the matrix $\mathcal{M}(T, B_V')$ is diagonal.
	- (vi) Let $T \in \mathcal{L}(V)$ on a complex vector space and consider B_V and B'_V two different Jordan basis. Then $\mathcal{M}(T, B_V)$ and $\mathcal{M}(T, B'_V)$ can have a different number of blocks in its diagonal form.

VII. Tensor Product, Determinant, and Trace

VII.1) (*) Let $\{v_1, \ldots, v_n\} \subset V$ and $\{w_1, \ldots, w_n\} \subset W$ be two lists of vectors.

- (i) Assume that $\{v_1, \ldots, v_n\}$ are linearly independent and that $v_1 \otimes w_1 + \cdots + v_n \otimes w_n = 0$. Prove that $w_1 = \cdots = w_n = 0$.
- (ii) Let $n = 3$, give an example to show that (i) fails if $\{v_1, \ldots, v_n\}$ is not linearly independent.
- (iii) Assume that dim $V > 1$ and dim $W > 1$. Prove that $\{v \otimes w \mid v \in V, w \in W\} \neq$ $V \otimes W$.
- (iv) Explain why the condition on the dimensions of V and W in (iii)) is necessary.
- VII.2) (*) Let V be a real vector space and $T \in \mathcal{L}(V)$.
	- (i) Assume that T has no eigenvalues, prove that $\det T > 0$.
	- (ii) Assume that dim V is even and that det $T < 0$. Prove that T has at least two distinct eigenvalues.
- VII.3) Let V be an inner product space and $T \in \mathcal{P}(V)$.
	- (i) Prove that $tr T = tr T^*$.
	- (ii) Assume that $T^2 = T$. Prove that $tr T = \dim \operatorname{range} T$.
- VII.4) Let $T \in \mathcal{L}(V)$ on a finite-dimensional vector space.
	- (i) Consider $T^{\vee} \in \mathcal{L}(V^{\vee})$ the dual operator determined by T. Prove that $\det T =$ $\det T^{\vee}.$
	- (ii) Assume that V is an inner product space. Prove that $\det T^* = \overline{\det T}$, where $T^* \in$ $\mathcal{L}(V)$ is the adjoint operator.
- VII.5) (*) Consider $f: V_1 \to V_2$ and $g: U_1 \to U_2$ linear maps between finite-dimensional vector spaces.
	- (i) Assume that f and g are surjective, prove that $f \otimes g$ is surjective.
- (ii) Assume that f and g are injective, prove that $f \otimes g$ is injective.
- VII.6) (*) Determine if the following are true or false and think of a brief explanation of why that is the case.
	- (i) Let $T, S \in \mathcal{L}(V)$ be two operators on a finite-dimensional vector space. Then $tr(TS) = tr(T) tr(S).$
	- (ii) Let V be a finite-dimensional vector space. There exist $T, S \in \mathcal{L}(V)$ such that $ST - TS = Id_V.$
	- (iii) Let $T \in \mathcal{L}(V)$ be an operator on a finite-dimensional vector space. Assume that $tr(TS) = 0$ for all $S \in \mathcal{L}(V)$, then $T = 0$.
	- (iv) Consider U, V, W then $(U \oplus V) \otimes W \simeq U \otimes W \oplus V \otimes W$.
	- (v) Assume that T is nilpotent, then $\det(\mathrm{Id} + T) = 1$.
	- (vi) Let $T, S \in \mathcal{L}(V)$ be two operators on a finite-dimensional vector space. Then $\det(T +$ S) = det(T) + det(S).