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These notes will be updated as the semester progresses. Their goal is to present the material from the
textbook and the class in a more concise form. I will often try to give slightly different phrasing (and/or
proofs) than the one provided in the textbook. The intent is to make you think the concepts through and
to work the concepts by yourself.

You are strongly encouraged to do the exercises as you read. They will help you parse the definitions,
examples, and concepts used in the proofs of the theory. Some of these exercises will be assigned as
Homework or will be discussed in class.

Points in red and blue are still being edited.
I would appreciate any comments. If you find mistakes, which are probably present, please let me know

too. I normally revise part of the notes after the class in which we discussed the material, so please refer
frequently to the website for the most up-to-date version.

1. Jan. 15, 2024

1.1. Fields. In your previous linear algebra class (Math 2101) you defined a vector space over the real
numbers. The very same definition works in a slightly more general context, we start by introducing some
terminology for that.

Definition 1. A field is a triple (F,+, ·), where F is a set, and we have operations (i.e. functions):

• addition + : F× F → F,

• multiplication · : F× F → F;

satisfying the following list of axioms:

(a) addition and multiplication are associative;

(b) addition and multiplication are commutative;

(c) there exists 0 ∈ F, such that a+ 0 = 0 + a = a, for all a ∈ F;

(d) there exists 1 ∈ F, such that a · 1 = 1 · a = a, for all a ∈ F;

(e) 0 ̸= 1;

(f) every a ∈ F has an additive inverse, i.e. an element b ∈ F such that a+ b = b+ a = 0;

(g) every a ∈ F\{0} has a multiplicative inverse;

(h) distributivity, i.e. for every a, b, c ∈ F one has: a · (b+ c) = a · b+ a · c.

Notation 1. We will omit the · when writing the multiplication operation, i.e. for any a, b ∈ F we will write
ab for a · b.

Example 1. (i) The real numbers R form a field with usual addition and multiplication.

(ii) The complex numbers C form a field with usual addition and multiplication.

(iii) The rational numbers Q := {pq | p ∈ Z, q ∈ Z\{0}} are a field.

Exercise 1. Write out explicitly what conditions (a-b) and (g) above are and check them in one of the
examples in Example 1.

Date: Last updated April 25, 2024.
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Exercise 2. Let p be a prime number and consider Fp = {0, 1 . . . , p− 1}, then for a, b, c ∈ Fp we define:

a+ b := c if (a+ b− c) is a multiple of p, a · b := c if (a · b− c) is a multiple of p.

(i) Check that + : Fp × Fp → Fp and · : Fp × Fp → Fp are well-defined.

(ii) Prove that Fp is a field.

Exercise 3. Can you come up with another example of a field?

1.2. Vector spaces. In a previous Linear Algebra class you probably approached vector spaces by concrete
examples. The main point of this class is to develop the theory from an abstract point of view focused on
proofs, mostly basis-free, and applicable to general fields of characteristic zero, until later results that might
require F to be the real or complex numbers.

Let F be a field.

Definition 2. A vector space over F is the data of

(i) a set V ;

(ii) an operation + : V × V → V ;

(iii) a scalar multiplication operation · : F× V → V .

These are subject to the following axioms:

(a) the operation + is associative, commutative, it admits an identity 0V ∈ V and inverse;

(b) the operation · is associative;

(c) for every v ∈ V one has 1 · v = v;

(d) scalar multiplication distributes over vector addition (i.e. the operation + on V ) and vector addition
distributes over scalar multiplication1.

Example 2. (i) The set {0} is a vector space over any field F.

(ii) Given a set S consider FS the set of functions f : S → F. The operations are defined by pointwise
addition and multiplication, i.e. given f, g ∈ FS and a ∈ F we let:

(f + g)(s) := f(s) + g(s), (a · f)(s) := a · f(s),

and 0FS is the zero function.

(iii) For any n ≥ 1, the set Fn is a vector space, where the operations are defined as follows. Let v =
(v1, . . . , vn) ∈ Fn, w = (w1, . . . , wn) ∈ F, and a ∈ F, then:

v + w := (v1 + w1, . . . , vn + wn), a · v := (av1, . . . , avn),

and 0Fn := (0, . . . , 0).

(iv) For any n,m ≥ 1 the set Mm×n(F) of m × n matrices with coefficients in F equipped with matrix
addition and scalar multiplication is a vector space over F.

(v) The set FN of sequences with value in F is a vector space with termwise addition and scalar multipli-
cation.

Remark 1. A set G equipped with an operation + : G×G→ G satisfying condition (a) above is an Abelian
group. These objects are very important in algebra and are studied in more detail in an abstract algebra
course, e.g. Math3301 (Algebra I).

Lemma 1. Let V be a vector space over F.

(1) Given v ∈ V such that v + w = w for all w ∈ V , then v = 0V .

1See Exercise 1 in Worksheet 1 for an example where this fails.
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(2) The additive inverse is unique.

(3) For every v ∈ V , we have 0 · v = 0V .

(4) For every a ∈ F, we have a · 0V = 0V .

(5) For every v ∈ V we have v + (−1) · v = 0, i.e. the additive inverse of v is given by −v := (−1) · v.

Proof. (1) We have v = v + 0V = 0V , where the first equality follows from Definition 2 (a) and the
second from the assumption.

(2) Assume there exists u1, u2 ∈ V such that u1 + v = 0V = u2 + v. Then we have: u1 = u1 + 0V =
u1 + u2 + v = u2 + u1 + v = u2 + 0V = u2.

(3) Notice v + 0 · v = (1 + 0) · v = 1 · v = v. Thus by (1), we have 0 · v = 0V .

(4) For any a ∈ F, we have: a · 0V = a · (0V + 0V ) = a · 0V + a · 0V . By (1), we have a · 0V = 0V .

(5) Notice v + (−1) · v = (1 + (−1)) · v = 0 · v = 0V , where in the last step we used (3).
□

Notation 2. (1) Notice that for a, b ∈ F and v ∈ V we have:

(ab) · v = a · (b · v)

by Defintition 2 (b). Thus, we can omit the · for the operation of scalar multiplication as we omitted it
for multiplication in a field (see) without causing ambiguity.

(2) We will denote the additive inverse of v by −v.

(3) We will denote 0V simply by 0. This should not be confused with 0 ∈ F the identity of the operation +
in F, as these live in different sets, except when V = F, in which case the notation is consistent.

Remark 2. (i) The empty set ∅ is not a vector space. Namely, it fails condition (a) from Definition 2.

(ii) Condition (a) from Definition 2 can be substituted by

(a)’ the operation + is associative, commutative, it admits an identity 0V ∈ V and (3) from Lemma
1 holds.

Indeed, assume (a)’, then we have 0V = 0 ·w = (1+ (−1)) ·w = w+ (−1)w for every w ∈ V . Thus (a)
holds.

Example 3. Let V be a vector space over R. We can define a vector space over the complex numbers VC,
called the complexification of V as follows:

• as a set we let VC := V × V ;

• + : VC × VC → VC is given by (u1, v1) + (u2, v2) := (u1 + u2, v1 + v2);

• scalar multiplication is defined as (a+ bi) · (u1, v1) = (au1 − bv1, bu1 + av1).

The reader should check that VC is a vector space over C.

Exercise 4. Universal property of complexification. Let V be a vector space over R and W a vector space
over C. Notice that W can be seen as a vector space over R, where a ·w := (a+ i0) ·w, i.e. using the natural
inclusion of R into C. Let HomR(V,W ) denote the set of linear operators between V and W , where W is
seen as a vector space over R and let HomC(VC,W ) denote the set of linear operator between VC and W as
vector spaces over C. Prove that there exists a bijection:

HomR(V,W )
∼−→ HomC(VC,W ).
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2. Jan. 18, 2024

2.1. Subspaces.

Definition 3. Let V be a vector space, a subset U ⊆ V is said to be a subspace if:

(a) 0 ∈ U ;

(b) the restrictions +U : U × U → V and ·U : F× U → V factors as:

U × U U

V

+′
U

+U

F× U U

V

·′U

·U
.

Given a subspace U ⊆ V we will simply write + : U×U → U and · : F×U → U for +′
U and ·′U , respectively.

Exercise 5. (i) Check that Definition 3 agrees with Definition (1.33) from the textbook.

(ii) Show that only requiring condition (b) in Definition 3 would not agree with the notion as defined in
the textbook.

Example 4. (i) let U ⊂ Fn defined as U := {(v1, . . . , vn) ∈ Fn | v1 + 2v2 + · · ·+ nvn = 0};

(ii) let p ∈ F[x, y, z] be a polynomial of the form p(x, y, z) = ax + by + cz, for some constants a, b, c ∈ F,
then U := {(v1, v2, v3) ∈ F3 | p(v1, v2, v3) = 0} is a subspace;

(iii) the subset of functions f : [0, 1] → R which are continuous is a subspace of all the functions from [0, 1]
to R;

(iv) let U ⊂ F[x] denote the subset of polynomials p such that p(0) = p′(0) = · · · = p(k)(0) = 0;

(v) the set of all sequences of complex numbers whose limit is 0 is a subspace of CN.

Exercise 6. (i) Let p ∈ R[x, y, z] be a polynomial of degree 1 and define the subset:

Up := {(v1, v2, v3) ∈ R3 | p(v1, v2, v3) = 0}.

Show that Up is a subspace if and only if p is of the form taken in (ii) of Example 4.

(ii) With the notation as in (i), assume that p1, p2 ∈ R[x, y, z] are polynomials of degree 1 with no constant
term, prove that

Up1 ∪ Up2 = Up1p2 .

Is Up1p2 a subspace of R3? What about Up1 ∩ Up2?

(iii) Can you guess which types of polynomials p ∈ R[x, y, z] have the property that Up is a subspace of R3.

Exercise 7. Let FN be the vector space of sequences over F. For an integer p ≥ 1, we define the subset
Sp ⊂ FN of sequences (an)n≥1 satisfying:

∞∑
n=1

|an|p <∞.

Proof or disproof Sp is a subspace for every integer p ≥ 1.

Definition 4. Given U1, U2 ⊆ V two subspaces of V we define the sum U1 + U2 ⊆ V as the subset of
elements v ∈ V such that there exist u1 ∈ U1 and U2 such that u1 + u2 = v. For U1, . . . , Uk a collection of
k subspaces of V , we inductively define:2

U1 + · · ·+ Uk := U1 + (U2(· · ·+ Uk)).

Example 5. (i) let Ui = {(v1, v2, v3, v4) ∈ F4 | vj = 0 for j ̸= i} for i = 1, 2, 3, 4. Then

U2 + U3 + U4 = {(v1, v2, v3, v4) ∈ F4 | v1 = 0}, U1 + U2 + U3 + U4 = F4.

2In fact, this definition is independent of the choice of parenthesization, hence justifying the notation.
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(ii) let U1 = {(v1, v2, v3, v4) ∈ F4 | v3 + v4 = 0 and v1 + v2 = 0}, let U2 = {(v1, v2, v3, v4) ∈ F4 | v1 = 0},
then U1 + U2 = F4.

Exercise 8. In the condition in Definition 4 are the vectors u1 and u2 uniquely determined? Compare (i)
and (ii) in Example 4.

Definition 5. Given U1, U2 ⊆ V two subspaces of V we say that U1 + U2 is a direct sum if u1 and u2 are
uniquely determined. In this case, we use the notation U1 ⊕U2

3. Similarly, given subspaces U1, . . . , Uk ⊂ V
we say that U1 + · · ·+ Uk is a direct sum if any vector v ∈ U1 + · · ·+ Uk can be written in an unique way
as v = u1 + · · ·uk, where uj ∈ Uj for 1 ≤ j ≤ k. We denote the direct sum by U1 ⊕ · · · ⊕ Uk.

Exercise 9. Let V = F4. Provide three distinct subspaces U1, U2, U3 ⊆ V such that:

V1 + V2 = V1 ⊕ V2, V2 + V3 = V2 ⊕ V3, but V1 + V2 + V3 ̸= V1 ⊕ V2 ⊕ V3.

Remark 3. Let U1, . . . , Uk ⊆ V be a family of subspaces, then we have U1 + · · · + Uk is a direct sum if
and only if for every j ∈ {1, . . . k} we have Uj ∩ (

∑n
i=1,i̸=j Ui) = {0}, where

∑n
i=1,i̸=j Ui denotes the sum of

U1, . . . , Uk where we omit Uj .

2.2. Span and linear dependence.

Definition 6. Given a subset S ⊆ V we define SpanS the span of S to be the subset of V consisting of
vectors v ∈ V such that

v = a1v1 + . . .+ akvk

for some k ∈ N, a1, . . . , ak ∈ F, and v1, . . . , vk ∈ S. It is convenient to define Span ∅ = {0}. If SpanS = V
we say that S spans V .

Remark 4. It is clear that SpanS is a vector space and that it contains S. We claim that SpanS is
the smallest subspace of V containing S. Consider a subspace U ⊆ V such that S ⊆ U , we claim that
SpanS ⊆ U . Indeed, given v ∈ SpanS we have v = v = a1u1 + . . . + akuk for some a1, . . . , ak ∈ F, and
v1, . . . , vk ∈ S. Since u1, . . . , uk ∈ U we have v ∈ U . Thus, it follows that SpanS belongs to the intersection
of all subspaces of V containing SpanS.

Example 6. (i) Consider {e1, . . . , en} ⊆ Fn, where ei = (0, · · · , 0, 1, 0, · · · , 0) where 1 is in the ith
position. Then Span {e1, . . . , en} = Fn.

(ii) Let a, b, c ∈ F and consider S = {(b,−a, 0), (0, c,−b)}, then we have SpanS = Up, where Up is defined
as in Example 4 (ii).

Exercise 10. Let ei be as in Example 6 (i) and consider the set S = {jei − iej}1≤i<j≤n, then

SpanS = {(v1, . . . , vn) ∈ Fn | v1 + 2v2 + · · ·+ nvn = 0}.

Also notice that S is not a basis in general. How could you change it to be a basis?

Definition 7. A vector space U is finite-dimensional if there exists a finite subset S ⊆ U such that
SpanS = U .

Example 7. (i) Fn is finite-dimensional;

(ii) the set Pn(F) of polynomials of degree at most n;

(iii) for any S a finite set FS is a finite-dimensional vector space.

Exercise 11. Check which of the examples of vector spaces defined so far are finite-dimensional.

Definition 8. (1) A polynomial with coefficients in F is a function p : F → F such that

(1) p(x) = a0 + a1x+ · · · anxn

for some n ∈ N and ai ∈ F.

(2) We let F[x] denote the set of polynomials in F, notice that the textbook uses the notation P(F).

3At the moment this notation might seem unmotivated, but it will be clearer when we consider this operation on vector
spaces.
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(3) Given a polynomial p ∈ F[x] the degree of p is the smallest natural number n ∈ N such that p can
be written as (1). By convention, we set the degree of the zero polynomial to be −∞.

(4) Let Pn(F) denote the set of polynomials of degree at most n.

Exercise 12. Check that Pn(F) forms a vector space.

Exercise 13. Assume that F = R or C. Let p : F → F be a function. Check that p ∈ Pn(F) if and only if
p(n+1) = 0.

Exercise 14. The set F[x] = P(F) is a vector space. Think about how we can formally define this.

Definition 9. Let V be a vector space over F. Given a finite subset S = {v1, . . . , vn} ⊂ V we say that S
is linearly independent if

a1v1 + · · ·+ anvn = 0 =⇒ a1 = · · · = an = 0,

where a1, · · · , an ∈ F. By convention, we declare that S = ∅ is linearly independent. We say that a subset
S ⊂ V is linearly dependent if it is not linearly independent.

Example 8. (i) For every k ∈ {1, . . . , n}, the set S = {e1, . . . , ek} ⊂ Fn, where ei’s are defined as in
Example 6 (i), is linearly independent.

(ii) For any k ≥ 0 the set Sk := {1, x, . . . , xk} ⊂ F[x] is linearly independent.

(iii) Given {v, w} ⊂ V , then {v, w} is linearly independent if and only if v ̸= aw for every a ∈ F and bv ̸= w
for every b ∈ F.

Exercise 15. Given a finite subset S ⊂ V . Prove that S if 0 ∈ S then S is linearly dependent.

Example 9. (1) the subset S = {e1 − e2, e2 − e3, e3 − e1} ⊂ F3 is linearly dependent.

(2) the subset S = {x2, x2 − 2x, 3x} ⊂ F[x] is linearly dependent.

Exercise 16. Given S = {(2, 3, 1), (1,−1, 2), (7, 3, c)} ⊂ F3. Check that S is linearly dependent if and only
if c = 8.

Exercise 17. Given {v1, v2, v3, v4} ⊂ V a linearly independent set. Prove that {v1, v1+v2, v1+v2+v3, v1+
v2 + v3 + v4} is a linearly independent set.

The next result is extremely useful in many future proofs since it allows one to make a linearly dependent
set smaller.

Lemma 2. Let {v1, . . . , vn} ⊂ V be a linearly dependent subset of a vector space V . Then there exists
k ∈ {1, . . . , n} such that

vk ∈ Span {v1, . . . , vk−1},

when k = 1 the right-hand side above should be interpreted as Span ∅. Moreover, one has:

Span {v1, . . . , vn} = Span {v1, . . . , vn}\{vk}.

Proof. Since {v1, . . . , vn} is linearly dependent there exists a1, . . . , an ∈ F not all zero such that

a1v1 + · · ·+ anvn = 0.

Thus, let k ∈ {1, . . . , n} such that ak ̸= 0, then we have:

vk = −a−1
k (a1v1 + · · ·+ ak−1vk−1 + ak+1vk+1 + · · ·+ anvn),

where the expression on the right above works for k ∈ {2, . . . , n−1}, we leave it to the reader to write the cor-
rect expression for the edge cases. To prove the last assertion we notice that clearly Span {v1, . . . , vn}\{vk} ⊆
Span {v1, . . . , vn}. Now suppose that w ∈ Span {v1, . . . , vn} and let w = a1v1 + · · · + anvn. Since
vk ∈ Span {v1, . . . , vk−1}, there exists b1, . . . , bk−1 ∈ F such that vk = b1v1 + · · ·+ bk−1vk−1. Then

w = (a1 + b1)v1 + · · ·+ (ak−1 + bk−1)vk−1 +

n∑
i=k+1

aivi,

so w ∈ Span {v1, . . . , vn}\{vk}. This finishes the proof. □
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Definition 10. Let T ⊆ V be a subset of a vector space. We say that T is a spanning set of V if SpanT = V .

Lemma 3. Let V be a finite-dimensional vector space. Consider S, T ⊆ V subsets of a vector space V .
Suppose that SpanS = V and that T is a linearly independent subset. Then |T | ≤ |S|.

Proof. Let v1 ∈ T and consider S ∪ {v1}. Since SpanS = V we have that v1 ∈ SpanS, so S ∪ {v1} is
linearly dependent. By Lemma 2 there exists u1 ∈ S such that SpanS ∪ {v1} = SpanS ∪ {v1}\{u1}. Now
let T1 := T\{v1}, S′

1 := S\{u1}, and S1 := S′
1 ∪ {v1}.

Let v2 ∈ T1 and consider S1 ∪ {v2}, as argued in the previous paragraph we can find u2 ∈ S1 such that
SpanS1 = Span (S1 ∪ {v2}\{u2}). Then we let T2 := T1\{v2}, S′

2 := S′
1\{u1, u2}, and S2 := S1 ∪ {v2}.

Notice that we can repeat this process k times, where k = |T | to obtain two sequences:

∅ ⊂ Tk ⊂ · · · ⊂ T1 ⊂ T, and S′
k ⊂ · · · ⊂ S′

1 ⊂ S

where SpanSi = SpanS, |S′
i| = |S| − i and |Ti| = |T | − i for every i ∈ {1, . . . , k}. This implies that

|S| ≥ k = |T |.
This is the same argument as in (2.22) in the textbook. □

Corollary 1. Let U ⊆ V be a subset of a finite-dimensional vector space V , then U is finite-dimensional.

Proof. We do an induction on the number of vectors necessary to span U . The base case is U = Span ∅ = {0},
in which case U is finite-dimensional. Assume that U ̸= {0} and let v1 ∈ U be a non-zero vector. Then
if U = Span v1 we are done, otherwise there exists v2 ∈ U such that v2 /∈ Span v1 and we can consider
Span {v1, v2}. We claim that repeating this step k times gives Span {v1, . . . , vk} = U for some k ∈ N.
Indeed, let S ⊂ V be a finite set such that SpanS = V . Such a set exists since V is finite-dimensional.
Then consider {v1, . . . , vk} ⊆ {v1, . . . , vk} ∪ S. Since S ⊆ {v1, . . . , vk} ∪ S spans V , we have that k ≤ |S|,
thus k is finite. □

3. Jan. 22, 2024

3.1. Basis. The following concept is extremely important in linear algebra. One could say that the main
difference between this course and Math2101 is that in Math2101 one is choosing a basis for every vector
space that is considered by default, whereas in Math2102 we are not.

Definition 11. A subset S ⊂ V is a basis if it satisfies:

(a) SpanS = V ;

(b) S is linearly independent.

Example 10. (i) The set {e1, . . . , en} as defined in Example 6 (i) is a basis of Fn.

(ii) The set {1, . . . , x4} is a basis of P4(F) the vector space of polynomials of degree at most 4.

(iii) The sets {(7, 5), (−4, 9)} and {(1, 2), (3, 5)} are both basis of F2.

Remark 5. A subset S = {v1, . . . , vn} ⊂ V is a basis of V if and only if every element u ∈ V can be written
as:

u = a1v1 + · · ·+ anvn

for an unique choice of a1, . . . , an ∈ F. Indeed, suppose that there are two n-uples (a1, . . . , an), (b1, . . . , bn) ∈
Fn such that

u = a1v1 + · · ·+ anvn, u = b1v1 + · · ·+ bnvn,

and ai ̸= bi for some i ∈ {1, . . . , n}. Then we have:

0 = u− u = (a1v1 + · · ·+ anvn)− (b1v1 + · · ·+ bnvn)

= (a1 − b1)v1 + · · ·+ (an − bn)vn.

Since S is linearly independent, we have that ai = bi for all i ∈ {1, . . . , n}.

One of the consequences of Lemma 2 is that any finite spanning set contains a subset which is a basis.

Lemma 4. Let T ⊂ V be a finite spanning subset of V . Then there exists S ⊆ T such that S is a basis.
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Proof. We proceed by downward induction. If T is linearly independent we are done. If T is linearly
dependent, by Lemma 2 there exists v ∈ T such that SpanT\{v} = SpanT = V and |T\{v}| < |T |. Since
T is finite this process stops and we obtain a basis. □

We get two immediate consequences:

Corollary 2. (1) Every finite-dimensional vector space V admits a basis.

(2) Any linearly independent subset S = {v1, . . . , vk} ⊂ V extends to a basis.

Proof. For (1) let T be a finite set such that SpanT = V . By Lemma 4 there exists S ⊆ T such that S is a
basis of V .

For (2) let T = {w1, . . . , wn} be a finite set such that SpanT = V . Then SpanS ∪T = V . Order the set
T ∪ S as follows {v1 < v2 < · · · < vk < w1 < · · · < wn}, then running the argument in the proof of Lemma
4 we notice that we obtain a subset R ⊂ V such that:

S ⊆ R ⊂ S ∪ T and SpanR = V.

□

The following result is interesting because it uses that F is a field in a serious way. In other words,
certain concepts so far would make sense for more general objects as (commutative) rings, i.e. the integers
Z, however, the following result is on of the first to fail.

Lemma 5. Let V be a finite vector space and consider a subspace U ⊆ V . Then there exists a subspace
W ⊆ V such that U ⊕W = V .

Proof. Notice that U is also finite-dimensional. Let T be a basis for U (it exists by Corollary 2 (1)). By
Corollary 2 (2) we can find T ⊂ R such that R is a basis of V . We claim that W := SpanR\T satisfies
U ⊕W = V . Indeed, it is clear that U +W = V , by Remark 3 we need to check that U ∩W = {0}. We give
names to the elements of U = {v1, . . . , vk} and W = {vk+1, . . . , vn}. Assume by contradiction that there
exists a non-zero vector v ∈ U ∩W , then we have

v = a1v1 + · · · akvk = ak+1vk+1 + · · ·+ anvn.

Thus, a1v1+· · · akvk−(ak+1vk+1+· · ·+anvn) = 0, and since {v1, . . . , vk, vk+1, . . . , vn} is linearly independent,
we have that ai = 0 for all i ∈ {1, . . . , n}. So we get a contradiction with U ∩W ̸= {0}. This finishes the
proof. □

3.2. Dimension. The notion of dimension is rather intuitive. The next result justifies that one can define
it in a näıve way.

Lemma 6. Given T, S two basis of a vector space V , we have |S| = |T |.

Proof. Notice that S and T are both linearly independent sets and spanning sets for V . Thus, Lemma 3
implies that |S| ≤ |T | and |T | ≤ |S|. □

Definition 12. The dimension of a vector space V , denoted by dimV , is the size of any basis of V .

Exercise 18. Go through all the examples of finite-dimensional vector spaces we had so far and find out
their dimension.

Here are a couple of easy consequences of the defintion.

Lemma 7. Assume that V is finite-dimensional.

(1) For any subspace U ⊆ V , we have dimU ≤ dimV .

(2) Let S ⊆ V be a linearly independent set, if |S| = dimV , then S is a basis.

(3) Given a subspace U ⊆ V such that dimU = dimV , then U = V .

(4) Let S ⊆ V such that SpanS = V and |S| = dimV , then S is a basis.
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Proof. (1) Let S ⊂ U be a basis of U . Notice that S ⊂ V is also linearly independent. Now Lemma 3
implies that |S| ≤ |T | for any basis T of V , i.e. |S| ≤ dimV .

(2) Assume that S is not a basis, then by Corollary 2 (2) there exists S ⊂ S′ such that S′ is a basis.
However, this would imply that dimV = |S| < |S′| where S′ is a basis of V , which is a contradiction.

(3) Let S ⊂ U be a basis of U . Since S ⊂ V is linearly independent in V and |S| = dimU = dimV , by
(2) we have S is a basis of V . Thus, U = SpanS = V .

(4) Assume that S is not a basis, i.e. S is linearly dependent, then by Lemma 2 there exist v ∈ S such
that SpanS\{v} = V . This gives dimV ≤ |S| − 1, which is a contradiction. □

Now we investigate how the notion of dimension interacts with sums of subspaces.

Lemma 8. Let U1, U2 ⊂ V be subspaces of V . Then we have:

dimU1 + U2 = dimU1 + dimU2 − dimU1 ∩ U2.

Proof. Let S12 be a basis of U1 ∩U2. By Corollary 2 (2) there exists S12 ⊂ S1 and S12 ⊂ S2 such that Si is
a basis of Ui, for i = 1, 2. We claim that S1 ∪ S2 is a basis of U1 + U2. Clearly, we have S1 ∪ S2 ⊂ U1 + U2,
this gives that SpanS1 ∪ S2 ⊂ U1 + U2. Since U1 ⊆ SpanS1 ∪ S2 and U2 ⊆ SpanS1 ∪ S2, we obtain
SpanS1 ∪ S2 = U1 + U2.

Now, we need to check that S1 ∪ S2 is linearly independent. For this we actually need to give names to
the elements of S12, S1 and S2. Let S12 = {u1, . . . , ui}, S1\S12 = {v1, . . . , vj} and S2\S12 = {w1, . . . , wk}.
Suppose we have an equation:

a1u1 + · · ·+ aiui + b1v1 + · · ·+ bjvj + c1w1 + · · ·+ ckwk = 0,

for some a1, . . . , ai, b1, . . . , bj , c1, . . . , ck ∈ F. Then solving for w := c1w1 + · · ·+ ckwk we have that w ∈ U1.
But this also gives that w ∈ U2. Thus, there exist some scalars d1, . . . , di such that

c1w1 + · · ·+ ckwk = d1u1 + · · · diui.

Now, since {w1, . . . , wk} ∪ {u1, . . . , ui} = S2 is a linearly independent set, we get that all cℓ’s vanish. Thus
we have that a1u1 + · · · + aiui + b1v1 + · · · + bjvj = 0. Since S1 = {v1, . . . , vj} ∪ {u1, . . . , ui} is linearly
independent, we get that all aℓ’s and bℓ’s also vanish. This finishes the proof. □

The previous result is an example of how questions about vector subspaces can be reduced to set-theoretic
questions by using bases. We will return to this in later sections.

Exercise 19. Let V be a ten-dimensional vector space.

(1) Suppose that U1, U2 ⊂ V are subspaces of dimension 6. Prove that there exists two vectors u1, u2 ∈
U1 ∩ U2 such that neither is a scalar multiple of the other.

(2) Suppose that U1, U2, U3 ⊂ V are subspaces such that dimU1 = dimU2 = dimU3 = 7, prove that
U1 ∩ U2 ∩ U3 ̸= {0}.

Exercise 20. Let U1, . . . , Um ⊆ V be a set of subspaces such that U1 ⊕ · · · ⊕ Um = V .

(i) Prove that dimV =
∑m
i=1 dimUi.

(ii) Let Bi = {vi1, . . . , viki} be bases of Ui for 1 ≤ i ≤ m, where ki = dimUi. Prove that B := ⊔1≤i≤mBi is
a basis of V .

4. Jan. 25, 2024

4.1. Linear Maps. Most objects we encounter in mathematics only have “real” meaning when compared
in an appropriate way to other objects of the same type. For instance, when study sets we are naturally
lead to studying functions and comparing sets using them.

Vector spaces, a more structure kind of set, need to be compared with each other using a more structured
kind of function. We introduce that now:

Definition 13. Let V and W be two vector spaces. A linear map, sometimes also called a linear transfor-
mation, is a function T : V →W satisfying:

(a) (additivity) T (u+ v) = T (u) + T (v) for every u, v ∈ U ;
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(b) (homogeneity) T (au) = aT (u) for every a ∈ F and u ∈ U .

We will let L(V,W ) denote the set of linear maps between V and W , and simply write L(V ) := L(V, V ) for
the set of linear maps from V to itself. Also notice that for any linear map T , one has T (0) = 0.

Example 11. Let V be a vector space.

(i) The zero map 0 : V → V , where 0(V ) := 0V = 0 is a linear map.

(ii) The identity map IdV : V → V given by IdV (v) = v.

(iii) Given any a ∈ F then Ta(v) := a · v is a linear map.

(iv) Differentiation D : R[x] → R[x] is a linear map, i.e. D(p) := p′.

(v) Integration T[0,1] : R[x] → R given by T[0,1](p) :=
∫ 1

0
p(x)dx.

(vi) Let q ∈ R[x] then Tq : R[x] → R[x] given by p(x) 7→ p(q(x)) is a linear map.

(vii) Let consider a collection of scalars ai,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

a1,1, . . . , an,1, a1,2, a2,2, . . . , an,2, . . . , a1,m, . . . , an,m ∈ F, then

T (v1, . . . , vn) := (a1,1v1 + · · ·+ a1,nvn, . . . , am,1v1 + · · ·+ am,nvn)

is a linear map.

Exercise 21. Prove that any linear map T : Fn → Fm is of the form given in Example 11.(vii).

Lemma 9. Let V and W be finite-dimensional vector spaces and {v1, . . . , vn} ⊂ V be a basis of V . Given
any subset {w1, . . . , wn} ⊂W there exists an unique linear map T : V →W such that

(2) T (vi) = wi for i ∈ {1, . . . , n}.

Proof. We first define T . Given any v ∈ V can be written as v = a1v1 + · · · + anvn we let Tv := c1w1 +
· · ·+ cnwn. Notice that this is well-defined, since there is only one single way of written v as above and that
it satisfies the conditions required. It is clear that it is a linear operator, we leave the details to be checked
to the reader. Finally, assume that there exists T ′ ∈ L(V,W ) satisfying equations (2). Then for any ai ∈ F
we have T ′(aivi) = aiwi, thus for any v ∈ V , which can be written uniquely as v = a1v1 + · · · + anvn we
obtain:

T ′(v = a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn = T (v).

This finishes the proof of uniqueness.
We leave the details to check that T is a linear map to the reader. □

We now observe that the set L(V,W ) can be naturally endowed with the structure of a vector space.

Lemma 10. For any two vector spaces V,W the set L(V,W ) is a vector space with addition and scalar
multiplication defined as:

(T1 + T2)(v) := T1(v) + T2(v) and (a · T )(v) := a · T (v).

Proof. The details are left to the reader. □

Exercise 22. Given U, V , and W vector spaces we can consider the composition operation:

(−) ◦ (−) : L(V,W )× L(U, V ) → L(U,W )

(S, T ) 7→ S ◦ T (v) := S(T (v)).

(i) Check that ◦ defined above is a linear map.

(ii) Check that the operation ◦ is associative and that it has identity elements. Part of the exercise is
making sense of what that means.

Remark 6. This is an abstract remark and can be skipped as we will not use this concept in this course.. A
mathematical concept that is really helpful in organizing certain mathematical objects is that of a category.
You can look up its definition here. We essentially just showed that vector spaces together with linear maps
form a category Vect. In fact, the category Vect has many nice properties.

Exercise 23. Let V be a vector space, such that dimV > 1. Prove that there exists T, S ∈ L(V ) such that
ST ̸= TS.

https://en.wikipedia.org/wiki/Category_(mathematics)
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4.2. Null spaces and ranges. In this subsection we define subspaces that are naturally associated to a
linear operator.

Definition 14. Let T : V →W be a linear map.

(1) the null space of T :
nullT := {v ∈ V | Tv = 0};

(2) the range of T :
rangeT := {w ∈W | Tv = w, for some v ∈ V }.

We check that nullT and rangeT are in fact subspaces of V and W , respectively. Let u, v ∈ nullT we
have

T (u+ v) = T (u) + T (v) = 0, and T (a · u) = a · T (u) = a · 0 = 0.

Assume that w1, w2 ∈ rangeT , then there exist u1, u2 ∈ U such that T (ui) = wi, for i = 1, 2. Then we
have

T (u1 + u2) = w1 + w2, and T (a · u1) = a · w1,

thus rangeT is a vector space.

Remark 7. The null space is sometimes also called kernel of T . The range is sometimes called image of T .

The next results shows how the kernel and range related to the notions of injective and surjective.

Lemma 11. Let T : V →W be a linear operator.

(i) T is injective if and only if nullT = {0};

(ii) T is surjective if and only if rangeT =W .

Proof. For (i), first assume that T is injective. Assume that there exists a non-zero vector v ∈ nullT .
However, this is a contradiction with Tv ̸= 0, since v ̸= 0. Now assume that T is injective, and suppose
that Tv = 0. Since Tv = T (0) = 0 and T is injective, we get v = 0. For (ii) there is nothing to check. □

Theorem 1 (Fundamental theorem of linear maps). Let V be a finite-dimensional vector space and T ∈
L(V,W ). Then

dimV = dimnullT + dim rangeT.

Proof. Let {u1, . . . , un} be a basis of nullT . By Lemma 2 (2) we can extend it to {u1, . . . , un, un+1, . . . , un+m}
a basis of V . We claim that {Tun+1, . . . , Tun+m} is a basis of rangeT . Indeed, let w ∈W , then there exist
v ∈ V such that Tv = w. Since {u1, . . . , un, un+1, . . . , un+m} is a basis of V , there exists scalars ai’s such
that v = a1u1 + · · ·+ an+mun+m and we have:

w = T (v) = T (a1u1 + · · ·+ an+mun+m) = a1T (u1) + · · · anT (un) + an+1T (un+1) + · · ·+ an+mT (un+m).

Since the first n terms vanish, we get w = an+1T (un+1)+· · ·+an+mT (un+m). This shows that {Tun+1, . . . , Tun+m}
is a spanning set. We now check that it is also linearly independent. Assume that there exists scalars
b1, . . . , bm ∈ F, not all zero, such that we have

b1T (un+1) + · · ·+ bmT (un+m) = 0

this implies that b1un+1 + · · ·+ bmun+m ∈ nullT . However, since {u1, . . . , un} is a basis of nullT , it means
there are scalars c1, · · · , cn ∈ F, not all zero, such that:

c1u1 + · · ·+ cnun = b1un+1 + · · ·+ bmun+m.

However, this is a contradiction with {u1, . . . , un+m} being a basis of V .
This finishes the proof. □

Here are a couple of easy consequences of the previous result.

Corollary 3. Let V and W be finite-dimensional vector spaces.

(1) Assume that dimV > dimW , then any linear map T : V →W is not injective.
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(2) Assume that dimV < dimW , then any linear map T : V →W is not surjective.

Proof. (1) Assume by contradiction that there exist T : V →W an injective linear map. By Lemma 11.(1) we
have nullT = 0 and Theorem 1 implies dimV = dim rangeT ≤ dimW , which is a contradiction. (2) Assume
by contradiction that there exist T : V → W a surjective linear map. Then Lemma 11.(2) and Theorem 1
implies that dimW = dim rangeT ≤ dimT , since dimnullT ≥ 0, which is also a contradiction. □

In fact, we can deduce some statements you will be familiar with from Math 2101 from Corollary 3.

Remark 8. (1) Any homogeneous system of linear equations with more variables than equations has a
nonzero solution. Consider V = Fn and W = Fm, a system of linear equations is given by an m×n
matrix A, which gives a linear operator TA : Fn → Fm, by Exercise 21. By Corollary 3(1) we get
that there exists v ∈ Fn such that Tv = 0.

(2) Any inhomogeneous system of linear equations with more equations than variables has no solution for
some choice of the constant terms. Again consider V = Fn andW = Fm and a linear transformation
T : V →W encoding the system of linear equations. If m > n, then by Corollary 3.(2) there exists
w ∈W such that Tv = w has no solution.

4.3. Matrices. Given two positive natural numbers n,m ≥ 1 and a field F an m-by-n matrix with coeffi-
cients in F is a list (ai,j)1≤i≤m, 1≤j≤n sometimes denoted by:

A =

a1,1 · · · a1,n
...

...
am,1 · · · am,n


We let Fm,n denote the vector space of m by n matrices. You should make sure you understand why this is
a vector space.

Definition 15. Given T ∈ L(V,W ) a linear map between two vector spaces V,W . Let BV = {v1, . . . , vn}
be a basis of V and BW = {w1, . . . , wm} be a basis of W . The matrix A associated to T and these basis is
defined by:

Tvj = a1,jw1 + · · ·+ am,jwm for 1 ≤ j ≤ n.

Sometimes we emphasize the dependence on the basis by denoting A := M(T,BV , BW ).

Example 12. (i) Let T : P3(F) → P2(F) be the linear map associated to the differentiation. Consider
the bases B3 = {1, x, x2, x3} and B2 = {1, x, x2} of P3(F) and P2(F), respectively. Then we have:

M(T,B3, B2) =

0 1 0 0
0 0 2 0
0 0 0 3

 .

(ii) For T as in (i) if we take the basis B3 = {1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3} and B2 = {1, x, x2} for
P3(F) and P2(F), respectively. Then we obtain a different matrix:

M(T,B3, B2) =

0 1 1 1
0 0 2 2
0 0 0 3

 .

(iii) Consider T : R4 → R4 the linear map given by T (v1, v2, v3, v4) = (v1 + v2, v3, 0, v2). On the basis
BV = {e1, e2, e3, e4} for the source V = R4 and Bw = {e1, e2, e3, e4} for the target, we have:

M(T,BV , BW ) =


1 1 0 0
0 0 1 0
0 0 0 0
0 1 0 0

 .

However, if we take the basis B
(2)
W = {e1 + e2, e2 + e3, e3 + e4, e4} then we have:

M(T,BV , B
(2)
W ) =


1 1 0 0
−1 −1 1 0
1 1 −1 0
−1 0 1 0

 .
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Exercise 24. (i) Make sure that you understand how to obtain the matrices in the Example above.

(ii) Can you come up with a basis of R4 in Example 12.(iii) where all of the columns are non-zero?

(iii) Can you come you with a basis BW such that the set of column vectors of the matrix in Example
12.(iii) are linearly independent?

Remark 9. The construction from Definition 15 sends the operations of addition and scalar multiplication
of linear maps to the corresponding operations between matrices as defined in Math 2101. Indeed, given
two linear maps T, S ∈ L(V,W ), a scalar a ∈ F, and two bases BV of V and BW of W . Then we have:

M(T + S,BV , BW ) = M(T,BV , BW ) +M(T,BV , BW ) and M(aT,BV , BW ) = aM(T,BV , BW ).

Question: When did you learn matrix multiplication? Have you every thought what was the meaning
behind the rule of how to multiply matrices?

Lemma 12. Consider U, V , and W three vector spaces and suppose that we picked bases BU , BV and BW ,
respectively. Consider T : U → V and S : V →W two linear maps. Then

(3) M(S ◦ T,BU , BW ) = M(S,BV , BW )M(T,BU , BV ),

where on the righthand side above we consider the multiplication of matrices.

Proof. This is done on page 73 of the textbook. We leave the details to the reader. □

Problem 1. Does the formula fail if we take different bases for V , i.e. do we have

M(S ◦ T,BU , BW ) = M(S,B′
V , BW )M(T,BU , BV )

for B′
V different than BV ?

Let’s recall a couple of concepts from Math 2101.

Definition 16. Given a matrix A represented as follow:

(4) A =

a1,1 · · · a1,n
...

...
am,1 · · · am,n

 .

(1) The column space of A, denoted col(A), is defined as the span of {v1, . . . , vn} in Rm, where vi =
(a1,i, . . . , am,i) for 1 ≤ i ≤ n.

(2) The row space of A is the span of {w1, . . . , wm} in Rn spanned by wj = (aj,1, . . . , aj,n) for 1 ≤ j ≤ m.

Lemma 13. For any m× n matrix A we have

dim col(A) = dim row(A).

Proof. TODO: Write this. □

5. Jan. 29, 2024

5.1. Isomorphisms. The following notion is going to allow us to compare vector spaces and identify when
there are “essentially” the same for all purposes of linear algebra.

Definition 17. A linear map T : V →W is invertible if there exists a map S :W → V such that

S ◦ T = IdV and T ◦ S = IdW .

Remark 10. Notice that if an inverse exists it is unique. Indeed, assume that S1 and S2 are inverses of
T . Then we have S1 = S1 ◦ T ◦ S2 = S2. Thus, we will denote by T−1 the uniquely determied inverse, if it
exists.

Example 13. Consider T : R3 → R3 given by T (v1, v2, v3) = (v1 + v2 + v3, v2, v3). Then T
−1(u1, u2, u3) =

(u1 − u2 − u3, u2, u3).
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Exercise 25. Determine which ones of the linear maps that we consider so far are invertible and determine
their inverses.

Lemma 14. Let T : V →W be a linear map. The following are equivalent:

(1) T is invertible;

(2) T is injective and surjective;

(3) nullT = {0} and rangeT =W .

Proof. The equivalence (2) ⇔ (3) is Lemma 11. Assume (1). Let v, u ∈ V such that Tv = Tu then we have
v = T−1Tv = T−1Tu = u, thus T is injective. Now let w ∈ W be any vector, then T−1w ∈ V satisfies
TT−1w = w, so T is surjective.

Assume (2). For any w ∈ W we let S(w) = v for any v ∈ V such that Tv = w. This is well-defined,
since by the injectivity of T , there is only one v satisfying Tv = w. We claim that S is an inverse of T .
Indeed, we have TSw = w and STv = v for every w ∈W and v ∈ V . □

In the case where our vector space is finite-dimensional, then we have a stronger version of Lemma 14.

Corollary 4. Assume that V and W are finite-dimensional vector space and that dimV = dimW and
consider T ∈ L(V,W ). The following are equivalent:

(1) T is invertible;

(2) T is injective;

(2)’ nullT = {0};

(3) T is surjective;

(3)’ rangeT =W .

Proof. The implications (1) ⇒ (2)/(2)′ and (1) ⇒ (3)/(3)′ are clear.
The equivalences (2) ⇔ (2)′ and (3) ⇔ (3)′ were establishes in Lemma 11.
Assume (2)’, then by Theorem 1 we have dimV = dim rangeT = dimW , so we have (3)’. Now (2)’ and

(3)’ imply (1) by Lemma 14.
Assume (3)’, then by Theorem 1 we have dimV = dim rangeT −dimnullT = dimW −dimnullT . Thus,

dimnullT = 0, so we have (2)’. Now (2)’ and (3)’ imply (1) by Lemma 14. □

Remark 11. It is important to notice that the assumption that V andW are finite-dimensional in Corollary
4 is crucial. Indeed, consider the linear map T : RN → RN given by

T (f)(n) =

{
0 if n = 0,

f(n+ 1) else.

This is injective but not an isomorphism.

Exercise 26. Write an example of a linear map which is surjective but not an isomorphism.

Exercise 27. Prove that there exists a polynomials p ∈ R[x] such that ((x2 + 5x + 7)p)′′ = q for any
q ∈ R[x].

Exercise 28. Consider S ∈ L(V,W ) and T ∈ L(W,V ) two linear maps. Assume that dimV = dimW <∞.
Prove that ST = IdW if and only if TS = IdV .

The next concept plays the role for vector spaces of what bijections are for sets.

Definition 18. Two vector spaces V and W are said to be isomorphic if there exists an invertible linear
map T : V → W , equivalently if there exists an invertible linear map S : W → T . In this case either
morphism T : V →W or S :W → V are called isomorphisms.

Notation 3. We will sometimes simply write V ≃W to say that V and W are isomorphic.

It turns out that it is rather easy to determine if two finite-dimensional vector spaces are isomorphic or
not as the next result shows.
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Lemma 15. Let V and W be two finite-dimensional vector spaces. The following are equivalent:

(1) V ≃W .

(2) dimV = dimW .

Proof. Assume (1) and let T : V →W be an invertible linear map. By Theorem 1 we have:

dimT = dimnullT + dim rangeT = dim rangeT = dimW,

where the second and third equalities above follow from Corollary 4.
Assume (2) and let {v1, . . . , vn} be a basis of V and {w1, . . . , wn} be a basis of W . Let T (c1v1 + · · · +

cnvn) := c1w1+ · · ·+cnwn, which is well-defined as argued in the proof of Lemma 9. We claim T is injective.
Indeed, assume that T (c1v1 + · · · + cnvn) = c1w1 + · · · + cnwn = 0 for some non-zero combination of ci’s,
then linear independence of wi’s imply that all ci’s are zero which gives that c1v1 + · · · + cnvn = 0. Thus,
by Corollary 4 we are done. □

The next result justify the idea that on can always think of a linear map between finite-dimensional
vector spaces as a matrix. Notice however that this depends on the choice of bases.

Lemma 16. Let V and W be finite-dimensional vector spaces of dimensions n = dimV and m = dimW .
Then L(V,W ) ≃ Fm,n.

Proof. Let BV = {v1, . . . , vn} be a basis of V and BW = {w1, . . . , wm} be a basis of W . We claim that

M := M(−, BV , BW ) : L(V,W ) → Fm,n

as defined in Definition 15 is an isomorphism. First notice that M is a linear map by Remark 9. First we
prove that M is injective. Indeed, assume that M(T ) = 0, then Tv = 0 for every v ∈ BV since BV is a basis
we get Tu = 0 for every u ∈ V , thus T = 0. Now we prove that M is surjective. Let A ∈ Fm,n, represented
as equation (4). Let Tvi := a1,iw1 + · · ·+ am,iwm for 1 ≤ i ≤ n. This is a well-defined linear operator and
it is clear that M(T ) = A. □

Here is a nice consequence of the discussion so far:

Corollary 5. For any finite-dimensional vector spaces V and W , we have dimL(V,W ) = dimV · dimW .

Proof. By Lemma 16 and Lemma 15 we have that

dimL(V,W ) = FdimW,dimV .

The result now follows from calculating the dimension of the space of dimV by dimW matrices. □

The following is variation on Definition 15.

Definition 19. Let V be a vector space of dimension n, given a basis BV = {v1, . . . , vn} we let M(V,BV ) :
V → Fn denote the linear map determined as follows

M(V,BV )(v) = (a1, . . . , an) if a1v1 + · · ·+ anvn = v.

You should check this is well-defined and indeed a linear map.

Remark 12. Notice that M(V,BV ) is always an isomorphism. Indeed, the same argument as in the proof
of Lemma 16 works, we simply take W to be F.

Remark 13. This remark is a bit abstract, but the reason we need it is to obtain certain matrix and vector
multiplication compatibility without doing many calculations. Given a vector v ∈ V in a finite-dimensional
vector space V , we can think of v as a linear operator Lv : F → V given as Lv(1) := v. Notice that there
was a choice in determining this linear operator, namely a basis of F, in this case {1} ⊂ F4. Now we claim
that:

M(Lv, {1}, BV ) = M(V,BV )(v).

4So there are other linear operators associated to v, but in a sense picking {1} ⊂ F as a basis of F over itself is rather
natural, i.e. it makes sense for any field.
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Indeed, let {v1, . . . , vn} = BV , then M(Lv, {1}, BV ) = (ai,1)1≤i≤n as defined in Definition 15 is given by:

Lv(1) = v = a1,1v1 + · · ·+ an,1vn,

whereas M(V,BV )(v) = (bi,1)1≤i≤n, as defined in Defintion 19, is the set (b1,1, . . . , bn,1) such that

v = b1,1v1 + · · ·+ bn,1vn.

The following is a consequence of Remark 13.

Corollary 6. Let T : V → W be a linear map between finite-dimensional vector spaces and BV and BW
bases, respectively. Then for any v ∈ V we have:

M(T,BV , BW )M(V,BV )(v) = M(W,BW )(Tv).

Proof. Indeed, we compute:

M(T,BV , BW )M(V,BV )(v) = M(T,BV , BW )M(Lv, {1}, BV )
= M(T ◦ Lv, {1}, BW )

= M(Tv, {1}, BW )

= M(W,BW )(Tv).

□

The next result relates a notion from Math 2101 which was defined using a basis, namely the column
space of a matrix, with the range of a linear map which didn’t depend on a basis to be defined.

Proposition 1. Let T : V → W be a linear map between finite-dimensional vector spaces and let BV =
{v1, . . . , vn} and BW = {w1, . . . , wn} be basis of V and W , respectively. The restriction of M(W,BW ) to
rangeT has the following factorization:

rangeT col(M(T,BV , BW ))

W FdimW

φ

⊂ ⊂

M(W,BW )

and φ is an isomorphism.

Proof. TODO: maybe this proof becomes simpler after the previous Remark.
Let (ai,j)1≤i≤m;1≤j≤n denote the entries of the matrix M(T,BV , BW ). Given w ∈ rangeT there exists

b1, . . . , bn ∈ F such that w = T (b1v1 + · · ·+ bnvn), we have

w = b1T (v1) + · · ·+ bnT (vn).

Now we notice that M(W,BV )(T (vj)) = (aj,1, . . . , aj,m) ∈ Fm for j ∈ {1, . . . , n}. (Check this!). By
definition we have

col(M(T,BV , BW )) = Span ({(a1,1, . . . , a1,m), . . . , (an,1, . . . , an,m)}).

Thus, linearity of M(W,BW ) implies

M(W,BW )(w) ∈ Span {M(W,BW )(Tv1), . . . ,M(W,BW )(Tvn)} = col(M(T,BV , BW ))

as required. This shows that φ factors as claimed.
We now check that φ is an isomorphism. We first notice that it is injective since it is the restric-

tion of an injective linear map. Finally, let w ∈ col(M(T,BV , BW )), then it can be written as w =
d1M(W,BW )(Tv1) + · · ·+ dnM(W,BW )(Tvn) for some d1, . . . , dn ∈ F. By the linearity of M(W,BW ) we
have

w = M(W,BW )(d1Tv1 + · · · dnTvn)

and it is clear that d1Tv1 + · · · dnTvn ∈ rangeT . This finishes the proof. □
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The proposition immediately imply:

Corollary 7. Let V,W be finite-dimensional vector spaces, T : V → W a linear map and BV and BW
bases, then

dim rangeT = dim col(M(T,BV , BW )) = dim row(M(T,BV , BW )).

We emphasize that in Corollary 7 the quantity dim rangeT is defined without any appeal to a basis
either of V or W .

We end this subsection stating a useful formula for change of bases. Before it we introduce some notation
to simplify the formula.

Notation 4. Let V be a finite-dimensional vector space and consider T : V → V a linear map and BV a
basis of V , then we simply write:

M(T,BV ) := M(T,BV , BV ).

Lemma 17. Let V be a finite-dimensional vector space and consider T : V → V a linear map and B1
V and

B2
V two bases of V . Then we have:

(5) M(T,B1
V ) = M(IdV , B

1
V , B

2
V )

−1M(T,B2
V )M(IdV , B

1
V , B

2
V ).

Proof. This is (3.84) from the textbook. Write details. □

6. Feb. 1, 2024

6.1. Products and Quotients of Vector spaces. In this section we introduce some constructions that
define a new (abstract) vector space from a number of other vector spaces.

Definition 20. Let n ≥ 1 be a natural number. Given a collection of vector spaces {V1, . . . , Vn} the product
V1 × · · · × Vn of {V1, . . . , Vn} is the vector space whose:

• set is the Cartesian product V1 × · · · × Vn;

• + : (V1×· · ·×Vn)× (V1×· · ·×Vn) → V1×· · ·×Vn is defined coordinate-wise, i.e. (vi)+I+(wi)I :=
(vi + wi)I , where I = {1, . . . , n};

• · : F× (V1 × · · · × Vn) → V1 × · · · × Vn is also given coordinate-wise.

Remark 14. The following is the universal property of the product. Given another vector space W and a
collection of linear maps fi : W → Vi, then there exists an unique linear map φ : W → V1 × · · · × Vn such
that for every i ∈ I the following diagrams commute:

W V1 × · · · × Vn

Vi

fi

φ

pi ,

where pi : V1 × · · · × Vn → Vi sends (vj)j∈I to vi. You will prove this for I = {1, 2} in Homework 1.

Example 14. (i) Let V1 = C2 and V2 = C3, then we have V1 × V2 = {((v1, v2), (v3, v4, v5)) ∈ C2 × C3}.
Notice that C2 × C3 ̸= C5, because of the parenthesization. We however normally simplify this to C5

because C2 × C3 is isomorphic to C5.

(ii) Let V1 = P(R) and V2 = Rm,n, then we have V1 × V2 = P(R)× Rm,n.

Remark 15. In fact, it is more natural, and sometimes convenient, to take Remark 14 as the definition of
product. More precisely, we say that the product U of vector spaces {V1, . . . , Vn}, if it exists, is a vector
space U satisfying the condition of Remark 14. Then we check two things:

(i) the construction given in Definition 20 solves the question asked in Remark 14;

(ii) any solution to Remark 14 is isomorphic to V1 × · · · × Vn.

Actually, one can do even better than (ii), we can prove that for any solution U , there exists an isomorphism
ψ : U → V1 × · · · × Vn and that ψ is unique, if we require it to be compatible with the morphisms pi for
V1 × · · · × Vn and p′i for U .
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Remark 16. In fact, V1×· · ·×Vn also satisfies a dual universal property. Namely, let W be a vector space
and gi : Vi → W be a collection of linear maps. Then there exists an unique linear ψ : V1 × · · · × Vn → W
such that for every i ∈ I the following diagrams commute:

Vi V1 × · · · × Vn

W
fi

ıi

ψ ,

where ıi : Vi → V1 × · · · × Vn sends vi to (0, . . . , 0, vi, 0, . . . , 0). You will also prove this for I = {1, 2} in
Homework 1. A similar comment as in Remark 15 applies to the object that would satisfy this condition, it
is called the coproduct of {V1, . . . , Vn}.

Proposition 2. Let S be a (not necessarily) finite set, and {Vs}S a collection of vector spaces. Consider:

(1)
∏
s∈S Vs the subset of functions f : S →

⋃
s∈S Vs satisfying f(s) ∈ Vs for every s ∈ S.

(2) ⊕ext
s∈SVs the subset of

∏
s∈S Vs such that f(s) ̸= 0 only for finitely many s ∈ S.

Then:

(i)
∏
S Vs and ⊕ext

S Vs are vector spaces.

(ii)
∏
S Vs together with the morphisms ps :

∏
S Vs → Vs given by ps(f) := f(s) satisfies the conditions of

Remark 14.

(iii) ⊕ext
S Vs together with the morphisms ıs : Vs → ⊕ext

S Vs given by ı(v)(t) = v for t = s and 0 otherwise,
satisfies the conditions of Remark 16.

Proof. We define (a · f + g)(s) := a · f(s) + g(s) for a ∈ F and f, g ∈
∏
S Vs. This clearly makes

∏
S Vs into

a vector space.
Let’s specify the morphisms ps :

∏
S Vs → Vs. Given f ∈

∏
S Vs we let ps(f) := f(s).

We prove (ii). Let {gs :W → Vs} be a collection of linear maps, then we define h :W →
∏
S Vs by

h(w)(s) := gs(w).

We notice that ps ◦ h(w) = h(w)(s) = gs(w) as required. Assume we are given h′ : W →
∏
S Vs another

linear map satisfying
ps ◦ h′ = gs for all s ∈ S.

Then we have that for any w ∈W and s ∈ S:

h′(w)(s) = ps ◦ h′(w) = gs(w) = ps ◦ h(w) = h(w)(s),

so h′ = h.
The argument for (iii) is analogous to (ii) and we leave the details for the reader. □

Exercise 29. Let {Vs}s∈S be a collection of vector spaces and assume that {Bs}s∈S is a collection of subsets
Bs ⊆ Vs, such that each Bs is a basis of Vs. Let B :=:= ∪s∈SBs:

(i) prove that B is a basis of ⊕s∈SVs;

(ii) give an example to show that B is not a basis of
∏
s∈S Vs in general.

Here are some immediate properties of the product of vector spaces.

Lemma 18. (1) Let V1, . . . , Vn be finite-dimensional vector spaces, then we have dim(V1 × · · · × Vn) =
(dimV1) + · · ·+ (dimVn).

(2) Suppose that V1, . . . , Vn are subspaces of an ambient vector space W . Then we have a linear map:

Γ : V1 × · · · × Vn → V1 + · · ·+ Vn

given by Γ(v1, . . . , vn) := v1+ · · ·+vn. Then V1+ · · ·+Vn is a direct sum if and only if Γ is injective.
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(3) Given subspaces V1, . . . , Vn of a finite-dimensional vector space W , then V1 + · · · + Vn is a direct
sum if and only if dim(V1 + · · ·+ Vn) =

∑n
i=1 dimVi.

Proof. (1) can be proved by induction. We notice that given {v1, . . . , vn} a basis of V1 and {u1, . . . , um} a
basis of V2, then {(v1, 0), . . . , (vn, 0), (0, u1), . . . , (0, um)} is a basis of V1 × V2. Indeed, assume we are given
(v, u) ∈ V1 × V2, then there exist unique a1, . . . , an in F such that v =

∑n
i=1 aivi and there are unique

b1, . . . , bm in F such that u =
∑m
j=1 bjuj . Thus we get:

(u, v) =

n∑
i=1

ai(vi, 0) +

m∑
j=1

bj(0, uj).

that is a1, . . . , an, b1, . . . , bm are unique coefficients writing (v, u) as a linear combination of the basis vectors.
(2) Again by induction it is enough to consider the case n = 2. Now recall that dimV1 + V2 = dimV1 +

dimV2 − dimV1 ∩ V2 and that V1 + V2 is a direct sum if and only if dimV1 ∩ V2 = 0. If we assume Γ is
injective then Corollary 4 implies Γ is an isomorphism, thus dimV1 + V2 = dim(V1 × V2), which gives that
V1 + V2 is a direct sum. Conversely, if dimV1 ∩ V2 = 0, then dimnull Γ = dim(V1 × V2)− dim rangeT . But
Γ is surjective, thus dim rangeT = dimV1 + V2 = dimV1 + dimV2, which gives that null Γ = 0.

(3) is essentially a simple restatement of (2). □

Notation 5. Given a set of vector spaces {Vs}s∈S , we will simply denote by ⊕s∈SVs their direction sum as
defined in Proposition 2. Moreover, given linear maps fs : Vs → U we will let ⊕s∈SfS : ⊕s∈SVs → U denote
the map determined by Remark 16.

Assume that S is finite, i.e. S = {1, . . . , n} for some n ∈ N. Notice that if each Vn ⊆ U is a subspace of
a vector space U . Then Lemma 18 gives a linear map:

V1 ⊕ · · · ⊕ Vn → V1 + · · ·Vn,

which is an isomorphism if and only if Vi ∩ Vj = {0} for every i ̸= j. In particular, this shows that the
notation V1 ⊕ · · · ⊕ Vn is unambiguous.

7. Feb. 5, 2024

7.1. Quotient spaces. The motivation for this session is the following. Suppose we are given a subspace
U ⊆ V and linear map L : V → W to another vector space such that L|U : U → W is the identically 0
linear map. Can we describe the data of L in “smaller” terms, i.e. is there some vector space Q and a map
T : Q → W such that we recover L from T . Notice that if V is finite-dimensional, one answer would be to
pick a subspace U ′ ⊂ V such that U ′⊕U = V , which exists by Lemma 5 and consider T := L|U ′ : U ′ →W .
There are however two problems with this solution:

(1) we had to assume that V is finite-dimensional;

(2) we had to make a choice of U ′, which we know, by Exercise 5 from Worksheet 1, is not unique–so T is
not unique either.

To solve these two problems we need some preparatory discussion.
Let U ⊂ V be a subspace, the consider the relation RU ⊆ V × V on V defined by

(v1, v2) ∈ RU if v1 − v2 ∈ U.

Exercise 30. For any subspace U ⊆ V the relation RU is an equivalence relation5.

Let V/U denote the set of equivalence classes of RU .

Lemma 19. There exists an unique structure of vector space on V/U such the natural map:

π : V → V/U

v 7→ π(v)

is a linear map.

5If you don’t remember this definition from set theory, see here.

https://en.wikipedia.org/wiki/Equivalence_relation
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Proof. First we give a concrete description of π(v). Notice that w ∈ π(v) if and only if w − v ∈ U , i.e.
w ∈ v + U := {w ∈ V | w − v ∈ U}. Now we define ·′ : F× V/U → V/U as follows:

a ·′ v̄ := π(a · v′), for any v′ ∈ V such that π(v′) = v̄.

Similarly, we define +′ : V/U × V/U → V/U as follows:

v̄1 +
′ v̄2 := π(v′1 + v′2), for any v

′
1, v

′
2 ∈ V such that π(v′1) = v̄1 and π(v′2) = v̄2.

Let’s check that these are well-defined. Let v′ and v′′ be such that π(v′) = π(v′′), i.e. there exist u ∈ U such
that v′ + u = v′′. Then we have

a · π(v′) = π(a · v′) = π(a · v′ + a · u)) = π(a · (v′ + u)) = π(a · v′′) = a · π(v′′).

The check that +′ is well-defined is similar. We leave it to the reader to check that π is a linear map. □

Definition 21. Given a subspace U ⊂ V the quotient set V/U with the structure from Lemma 19 is called
the quotient space of V by U .

Remark 17. Notice that nullπ = U . Indeed, for any u ∈ U we have π(u) = π(u − u) = π(0) = 0. Thus,
Theorem 1 imply that dimV/U = dimV − dimU , whenever V is finite-dimensional.

We now show that this construction solves the problem that motivated us in the begining of this sub-
section.

Lemma 20. Given a subspace U ⊆ V and a linear map L : V → W such that L|U = 0. Then there exist
an unique T : V/U →W such that the following diagram commutes

V V/U

W

L

π

T
,

i.e. T ◦ π = L.

Proof. We let T (v̄) := L(v′) for any v′ ∈ V such that π(v′) = v̄. We check this is well-defined. Let v′, v′′

such that π(v′) = π(v′′) then v′ = v′′ + u, which gives

L(v′) = L(v′′ + u) = L(v′′).

We leave it to the reader to check that T is linear and uniquely determined. □

Remark 18. Notice that given a subspace U ⊆ V of a finite-dimensional vector and a linear map L : V →W

we can always modify L on U to make it satisfy the conditions of Lemma 20. Indeed, consider L − L̃|U ,
where L̃|U : V → W is the extension of L|U defined as follows: let W ⊆ V be any subspace such that

W ⊕ U = V , then L̃|U := 0|W ⊕ L̃|U . Notice that L̃|U does not depend on W . Explain the notation

0|W ⊕ L̃|U and why it doesn’t depend on U .

Corollary 8. Let L : V →W be a linear map, then one has a canonical map:

L̄ : V/ nullT →W

satisfying the following:

(i) L̄ ◦ π = L;

(ii) L̄ is injective;

(iii) range L̄ = rangeL;

(iv) V/ nullT ≃ range L̄.
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Proof. The existence of L̄ and (i) follow directly from Lemma 20, by noticing that L|nullL = 0
For (ii), suppose that there exist v̄ ∈ V/ nullL such that L̄(v̄) = 0, but v̄ ̸= π(0). This implies that there

exist v′ ∈ V such that π(v′) = π(0), i.e. v′ ∈ nullL and L̄(π(v′)) = L(v′) = 0, which is a contradiction.
For (iii), we notice that range L̄ ⊆ rangeL by set-theoretic consideration. Now assume that w ∈ rangeL

and let v ∈ V such that L(v) = w, then L̄(π(v)) = w.
For (iv), we simply notice that L̄ factors as:

V/ nullT range L̄

W
L̄

φ

ı ,

where by (ii) and (iii) φ is injective and surjective, hence an isomorphism by Lemma 14. □

8. Feb. 8, 2024

8.1. Duality. The next definition associates a vector space to given vector space that is very useful.

Definition 22. Given a vector space V the vector space V ∗ := L(V,F) is called its dual space6. Elements
λ ∈ V ∗ are called linear functionals on V .

Example 15. (1) Let P3(R), then φ : P3(R) → R given by φ(p) :=
∫ 1

0
p(x)dx is a linear functional,

i.e. φ ∈ P3(R)∗.

(2) For any a := (a1, . . . , an) ∈ Fn we have λa : Fn → F given by λa(v1, . . . , vn) :=
∑n
i=1 aivi.

(3) Let V = R[[x]] denote the vector space of Taylor series, i.e. f : R → R given by a series f(x) =∑
i≥0 aix

i. Then V ∗ ≃ R[x]. Give details.

Here are a couple of properties on the finite-dimensional case.

Lemma 21. Given a finite-dimensional vector space V .

(1) One has dimV = dimV ∗.

(2) A choice of basis BV for V determines a basis BV ∗ for V ∗.

Proof. By Corollary 5 we know that dimL(V,F) = dimV · dimF = dimV .
Let Bv = {v1, . . . , vn} be a basis of V , then we define BV ∗ := {λ1, . . . , λn} ⊂ V ∗ as follows:

λj(vi) =

{
1 if j = i

0 else
.

Notice that if there exists a collection of scalars a1, . . . , an ∈ F not all zero such that λ :=
∑n
i aiλi = 0,

then λ(v1 + · · · vn) = 0 would contradict {v1, . . . , vn} being linearly independent. Thus, BV ∗ is linearly
independent. By Lemma 7 (2) BV ∗ is a basis. □

Remark 19. The set BV ∗ is called the dual basis. It has the following property:

v =

n∑
i=1

λi(v)vi,

with the notation as in the proof of Lemma 21.

Definition 23. Given a linear map T ∈ L(V,W ) its dual is the linear map T ∗ ∈ L(W ∗, V ∗) defined as
follows:

T ∗(λ) := λ ◦ T for every λ ∈W ∗.

Example 16. Let D : R[x] → R[x] be the linear map given by differentiation. Then D∗ : R[x]∗ → R[x]∗ is

given by D∗(φ) = φ ◦D. For example, if φ ∈ R[x]∗ is given by φ(p) =
∫ 1

0
p(x)dx, then D∗ ◦

∫ 1

0
p(x)dx =

p(1)− p(0) by the fundamental theorem of Calculus.

6The textbook uses the notation V ′ for the dual of V and similarly to other dual concepts. We adopt a notation that is
consistent with Wikipedia.

https://en.wikipedia.org/wiki/Duality_(mathematics)
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Here are some properties of the construction from Definition 23.

Lemma 22. Let V and W be two vector spaces. Then (−)∗ : L(V,W ) → L(W ∗, V ∗) is a linear operation.
Moreover, we have (T ◦ S)∗ = S∗ ◦ T ∗.

Proof. Let T, T ′ ∈ L(V,W ) then (aT + T ′)∗ :W ∗ → V ∗ is given on an element λ ∈W ∗ by

(aT + T ′)∗(λ) = λ ◦ (aT + T ′) = λ ◦ aT + λ ◦ T ′ = aλ ◦ T + λ ◦ T ′

by Exercise 22. The second equation is left as an exercise. □

Exercise 31. Is the operation linear map that sends T ∈ L(V,W ) to T ∗ ∈ L(W ∗, V ∗) an isomorphism?
Prove or give a counter-example.

Exercise 32. Let V be a finite-dimensional vector space, prove that the map:

ΦV : V → (V ∨)∨ v 7→ ΦV (v)(λ) := λ(v), for every λ ∈ V ∨

is an isomorphism of vector spaces. Notice how we didn’t need to pick a basis of V to write ΦV .

We now study how the notion of dual vector space interacts with the concepts of null space and range.
First we introduce the following:

Definition 24. Let U ⊂ V be a subspace, the annihilator of U is:

U0 := {λ ∈ V ∗ | λ(u) = 0 for all u ∈ U}.

We notice that U0 ⊂ V ∗ is a subspace. Indeed, let λ, µ ∈ U0, then we have

(a · λ+ µ)(v) = a · λ(v) + µ(v) = λ(a · v) + µ(v) = 0 + 0,

if v ∈ U , since this implies a · v ∈ U as well.

Example 17. (1) Let P3(R) ⊂ P(R) be the subspace of degree at most 3 polynomials.

(2) Let R[x] ⊂ R[[x]] be the subspace of polynomials. Then R[x]0 What is this?

Lemma 23. Let T : V →W be a linear map, then:

(i) nullT ∗ = (rangeT )0;

(ii) rangeT ∗ ⊆ (nullT )0 is a subspace.

Proof. For (i) let λ ∈ nullT ∗ this implies that λ ◦ T : V → F vanishes. Consider w ∈ rangeT , i.e. w = Tv
for some v ∈ V , then

λ(w) = λ(Tv) = 0.

So nullT ∗ ⊆ (rangeT )0. Now let λ ∈ (rangeT )0 then for any w = Tv ∈W we have

λ(w) = λ(Tv) = λ ◦ T (v) = T ∗(λ)(v) = 0.

Notice that the above equation holds for any v, thus T ∗(λ) = 0, which gives (rangeT )0 ⊆ nullT ∗.
For (ii), consider λ ∈ rangeT ∗, i.e. λ = µ ◦ T for some µ ∈ V ∗. Let v ∈ (nullT )0, then we have

λ(v) = µ ◦ T (v) = 0.

This implies that rangeT ∗ ⊆ (nullT )0 as sets. We leave it to the reader to check that one is a subspace of
the other. □

Warning 1. Notice that in Lemma 23 (ii) we don’t always have that (nullT )0 ⊆ rangeT ∗. Can you give
an example where this does not happen?

Remark 20. Let U ⊆ V be a subspace of a finite-dimensional vector space V . Let T : U →W be a linear

map, then there exist an extension of T to V , i.e. a linear map T̃ : V →W such that T̃
∣∣∣
U
= T . Indeed, let

{u1, . . . , un} be a basis of U , which can be extended to {u1, . . . , un, un+1, . . . , wm} a basis of V . Then we
define:

T̃ (ui) :=

{
T (ui) for i ≤ n;

0 for i ≥ n+ 1.

Notice that this is well-defined and satisfy the required condition to be an extension.
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We collect some properties of the annihilator when the ambient vector space is finite-dimensional.

Lemma 24. Let U ⊂ V be a subspace of a finite-dimensional vector space V .

(i) dimU0 = dimV − dimU ;

(ii) U0 = V ∗ if and only if U = {0};

(iii) U0 = {0} if and only if U = V .

Proof. For (i) let ı : U → V denote the inclusion linear map. Then we get a linear map ı∗ : V ∗ → U∗ and
Theorem 1 implies that:

dim range ı∗ + dimnull ı∗ = dimV ∗.

Notice that null ı∗ = U0, by Lemma 23(i), since range ı = U .
Now we claim that range ı∗ = U∗. Indeed, let λ : U → F be a linear map, by Remark 20 there exist

λ̃ : V → F such that λ̃ ◦ ı = λ. Thus, U∗ ⊆ range ı∗, which implies the equality, since we have range ı∗ ⊆ U∗

by definition. Thus, we obtain:

dimV = dimV ∗

= dim range ı∗ + dimnull ı∗

= dimU∗ + dimU0

= dimU + dimU0,

where in the first and last equalities we used that V ≃ V ∗ and U ≃ U∗ for finite-dimensional vector spaces.
For (ii) we notice that U0 ⊆ V ∗ being a subspace, we have that U0 = V ∗ if and only if dimU0 =

dimV − dimU = dimV = dimV ∗, that is U = 0.
Since (iii) is proved similarly, we leave the details to the reader.

□

Similar to Lemma 24 we collect some properties of the dual of a linear map when the vector spaces
involved are finite-dimensional.

Lemma 25. Suppose that V and W are finite-dimensional and let T : V →W be a linear map. Then:

(i) dimnullT ∗ = dimnullT + dimW − dimV ;

(ii) dim rangeT ∗ = dim rangeT ;

(iii) rangeT ∗ = (nullT )0;

(iv) T ∗ is injective if and only if T is surjective;

(v) T ∗ is surjective if and only if T is injective.

Proof. For (i) notice that by Lemma 23 we have dimnullT ∗ = dim(rangeT )0. By the fundamental theorem
of linear maps we have:

dimV = dimnullT + dim rangeT.

Notice that by Lemma 24 (1) we have dim(rangeT )0 = dimW − dim rangeT . Thus, substituting back we
obtain:

dimV = dimnullT + dimW − dim(rangeT )0 = dimnullT + dimW − dimnullT ∗.

For (ii) we compute:

dim rangeT ∗ = dimW ∗ − dimnullT ∗

= dimW − dim(rangeT )0

= dim rangeT,

where the first equality is the fundamental theorem of linear maps applied to T ∗, the second uses that W
is finite-dimensional, so dimW = dimW ∗ and Lemma 23(i). The last equality follows from Lemma 24(i).
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For (iii), by Lemma 23(ii) we have that rangeT ∗ ⊆ (nullT )0 is a subspace. We will be done if we prove
that they have the same dimension. Notice that:

dim rangeT ∗ = dim rangeT

= dimV − dimnullT

= dim(nullT )0,

where the first equality comes from (ii), the second from the fundamental theorem of linear maps, and the
third from Lemma 24(i).

(iv) We have the following sequence of logical equivalences:

T ∗ is injective ⇔ nullT ∗ = 0

⇔ (rangeT )0 = 0

⇔ rangeT =W

⇔ T is surjective .

Here the first equality is Lemma 11(i), the second is Lemma 23(i), the third is Lemma 24(ii) and the last is
Lemma 11(ii).

The argument for (v) is similar to that for (iv) and we leave it as an exercise. □

Finally, we remark on how passing to the dual linear map interacts with associating a matrix to a linear
map. Consider the function:

(−)t : Fm,n → Fn,m

(aij) 7→ (aji)

that sends a matrix to its transpose, i.e. we swap the indices of its terms.

Lemma 26. Let V and W be two finite-dimensional vector spaces with bases BV and BW . These deter-
mine bases BV ∗ and BW∗ of V ∗ and W ∗, respectively, as explained in Remark 19. The following diagram
commutes:

L(V,W ) Fm,n

L(W ∗, V ∗) Fn,m

M(−,BV ,BW )

(−)∗ (−)t

M(−,BW∗ ,BV ∗ )

,

where n = dimV and m = dimW .

Proof. Write this! □

Here is a nice consequence of the previous result.

Corollary 9. Let A ∈ Fm,n be an m by n matrix. Then dim col(A) = dim row(A).

Proof. Let T : Fn → Fm be the linear operator corresponding to A for Bn and Bm the standard bases of
Fn and Fm, respectively. That is we have M(T,Bn, Bm) = A. Then we have:

dim col(A) = dim rangeT

= dim rangeT ∗

= dim col(M(T ∗, B∗
m, B

∗
n))

= dim col(At)

= dim row(A).

□



LINEAR ALGEBRA II SPRING 2024 - HKU 25

8.2. Polynomials. This subsection is a digression that collects some facts about polynomials that we will
need in the next topic.

Recall that C is the field of complex numbers. As a set one has C ≃ R×R the addition and multiplication
are given by:

(a, b) + (a′, b′) = (a+ a′, b+ b′) and (a, b) · (a′, b′) = (aa′ − bb′, ba′ + ab′).

These are normally denoted by a+ ib := (a, b). We have functions:

• (−) : C → C given by (a+ ib) = a− ib called complex conjugation;

• Re : C → R given by Re(a+ ib) = a called the real part ;

• Im : C → R given by Im(a+ ib) = b called the imaginary part ;

• | − | : C → R given by |a+ ib| =
√
a2 + b2 called the absolute value.

Here is a list of properties they satisfy:

Lemma 27. For any two complex numbers z, w ∈ C we have:

(i) z + z = 2Re z;

(ii) z − z = 2 Im zi;

(iii) zz = |z|2;

(iv) z + w = z + w and zw = zw;

(v) z = z;

(vi) |Re z| ≤ |z| and | Im z| ≤ z;

(vii) |z| = |z|;

(viii) |zw| = |z||w|;

(ix) |z + w| ≤ |z|+ |w|.

Proof. Left as an exercise. □

Definition 25. Given a polynomial p ∈ F[x] a zero of p is an element α ∈ F such that p(α) = 0.

Lemma 28. Let p ∈ F[x] be a polynomial then the following are equivalent:

(1) α is a zero of p;

(2) there exists a polynomial q ∈ F[x] such that p(x) = (x− α)q(x).

Proof. Assume (1) and let p(z) =
∑m
i=0 aiz

i for some coefficients ai ∈ F. Then we have:

p(z)− p(α) =

m∑
i=1

ai(z
i − αi).

Recall that each zi − αi can be factored as:

zi − αi = (z − α)

i∑
j=1

zi−jαj−1.

Thus, we obtain:

m∑
i=1

ai(z
i − αi) =

m∑
i=1

ai(z − α)

i∑
j=1

zi−jαj−1

= (z − α)

m∑
i=1

ai

i∑
j=1

zi−jαj−1,

that is we can take q(z) =
∑m
i=1 ai

∑i
j=1 z

i−jαj−1. Notice that this is not unique.

Now assume (2), then clearly we get p(α) = (α− α)q(α) = 0. □
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Here is a basic result about polynomials that follows from the previous Lemma.

Corollary 10. Let p be a polynomial of degree m ≥ 0. Then p has at most m zeros.

Proof. We proceed by induction on m. For m = 0 we have p(z) = a0 where a0 ̸= 07. Thus, p(α) = a0 for
every α ∈ F, so p has no zeros.

Assume we proved the result for all polynomials of degree up to m−1. Let p have degree m. If it has no
zeros, there is nothing to prove. Assume that p has a zero α, then p(z) = (z − α)q(z) by Lemma 28. Since
deg p = deg(z−α) deg(q) we obtain that q has degree m− 1, so it has at most m− 1 zeros by the inductive
hypothesis. This finishes the proof. □

The following result is called the division algorithm for polynomials, it is analogous to the Euclidean
algorithm that you learned to perform division of integers.

Lemma 29. Let p, s ∈ F[x] be two polynomials such that s ̸= 0. Then there exist unique polynomials
q, r ∈ F[x] such that:8

(i) p = qs+ r;

(ii) deg r < deg s.

Proof. Exercise for the reader. □

The following result is a fact. In fact, it can be seen as the “raison d’être” of the complex numbers.

Theorem 2. Every non-constant polynomial with complex coefficients has a root.

Proof. See page 125 in the textbook. TODO: Give another argument. □

Remark 21. There are many proofs of this theorem. You should make sure you know at least one. Also,
most places call the Theorem 2 the “fundamental theorem of algebra”.

We also need a result on the factorization of real polynomials.

Proposition 3. Let p ∈ R[x] be a nonconstant polynomial. Then p has an unique factorization:

p(x) = a

m∏
i=1

(x− λi)

k∏
j=1

(x2 + bjx+ cj),

where a, λ1, . . . , λm, b1, . . . , bk, c1, . . . , ck ∈ R and for each 1 ≤ j ≤ k we have b2j < 4cj.

Proof. The proof is obtained by considering the factorization of Theorem 2, i.e. that p(x) =
∏n
i=1(x − αi)

where αi ∈ C. We then split this product into the factors which are already real and the factors where we
have (x− αi)(x− αj) where α = αi = αj . One can prove by induction that this most be the case for p(x)
to have real coefficients. Then the product:

x2 − (α+ α) + αα

can be easily seen to satisfy (α+ α)2 < 4|α|2 by Lemma 27 (i). □

9. Feb. 19, 2024

9.1. Invariant subspaces.

Definition 26. Let T : V → V be a linear map from V to itself. We will call T an operator. A subspace
U ⊆ V is invariant (with respect to T )9 if the restriction T |U : U → V factors as follows:

U U

V V

⊂

T |U

⊂

T

,

i.e. for every u ∈ U we have T (u) ∈ U .

7Recall that we posed that deg 0 = −∞, which avoids us having to deal with the exception of the zero polynomial, which
possibly has infinitely many zeros, e.g. if the field F is infinite.

8Notice that if we drop condition (ii) that there are no unique polynomials satisfying (i).
9When the operator T is clear from the context we will omit the part “with respect to T”.

https://en.wikipedia.org/wiki/Euclidean_division
https://en.wikipedia.org/wiki/Euclidean_division
https://mathoverflow.net/questions/10535/ways-to-prove-the-fundamental-theorem-of-algebra
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Example 18. (i) Given any operator T : V → V , then {0}, V, nullT , and rangeT are invariant subspaces
of V .

(ii) Let D : P(R) → P(R) denote the differentiation operator. Then Pn(R) ⊂ P(R) the subspace of
polynomials of degree at most n is invariant subspace for every n ∈ N.

The following concepts are key definitions in this class.

Definition 27. Given an operator T : V → V . A non-zero vector v ∈ V such that Span v ⊆ V is an
invariant subspace with respect to T is called an eigenvector.

Remark 22. Given an operator T : V → V and a non-zero vector v ∈ V such that Span v ⊆ V is an
invariant subspace with respect to T . Then we claim that T (v) = λ · v for an unique λ ∈ F. Indeed, since
T (v) ∈ Span v we have that T (v) = λv for some λ ∈ F.
Definition 28. Let T : V → V be an operator.

(i) if v ∈ V is an eigenvector of T , with T (v) = λv we say that λ is the eigenvalue of v;

(ii) we will say that λ ∈ F is an eigenvalue of T if there exists an eigenvector v ∈ V such that λ is an
eigenvector of v.

Remark 23. Suppose that λ ∈ F is an eigenvalue of T and v ∈ V and eigenvector, then any non-zero
multiple av is also an eigenvector of T with eigenvalue λ.

Lemma 30. Given a vector space V and an operator T : V → V the following are equivalent:

(1) λ is an eigenvalue of T ;

(2) T − λ IdV is not injective.

Assume that V is a finite-dimensional vector space, then the above are also equivalent to:

(3) T − λ IdV is not surjective;

(4) T − λ IdV is not invertible.

Proof. Left as an exercise. □

Example 19. (i) Let T : R2 → R2 denote the operator given by T (x, y) = (−y, x). Assume that
T (x, y) = λ(−y, x) for some non-zero (x, y) ∈ R. Then we have x = −λy = −λ2x and y = λx = −λ2y,
which gives λ2 = −1, since either x or y is non-zero. However, there is no λ ∈ R such that λ2 = −1.
Thus, T has no eigenvectors and so no eigenvalues.

(ii) Now consider Let T : C2 → C2 denote the operator given by T (z, w) = (−w, z). The same argument
as in (i) gives that λ2 = −1 which gives λ = ±i in C. By inspection we see that T (z,−iz) = i(z,−iz)
and T (z, iz) = −i(z, iz), so for any z ̸= 0 we have that (z,−iz) is an eigenvector of i and (z, iz) is an
eigenvector of −i.

Lemma 31. Given an operator T : V → V and {v1, . . . , vn} a list of eigenvectors whose eigenvalues
{λi}1≤i≤n satisfy λi ̸= λj for every i ̸= j. Then {v1, . . . , vn} are linearly independent.

Proof. Let {v1, . . . , vn} be the smallest set of vector such that we have a non-trivial linear combination

n∑
i=1

aivi = 0.

We apply (T − λn) to the equation above to obtain:

n∑
i=1

ai(λi − λn)vi =

n−1∑
i=1

ai(λi − λn)vi = 0,

where all of ai(λi − λn) ̸= 0 for 1 ≤ i ≤ n− 1. This gives a non-trivial linear combination of smaller set of
vectors, which is a contradiction with the initial assumption. □

Corollary 11. Let T : V → V be an operator on a finite-dimensional vector space. Then T has at most
dimV distinct eigenvalues.

Proof. If T has m distinct eigenvalues then Lemma 31 gives that there are m distinct linearly independent
vectors. Lemma 3 gives that m ≤ dimV . □
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9.2. Powers of operators. Let T : V → V be a linear operator on a vector space V over a field F. Then
for any polynomial p ∈ F[x] we let p(T ) : V → V be the linear operator given by:

p(T ) := a0 IdV +a1T + a2T
2 + · · ·+ anT

n.

Notice that this assignment respect the following compatibilities, given p, q ∈ F[x] two polynomials and
an operator T : V → V then we have:

(6) (pq)(T ) = p(T )q(T ) and p(T )q(T ) = q(T )p(T ).

Exercise 33. Check the relations in (6).

It turns out that by applying polynomials to an operator T we can create, possibly new, invariant
subspaces.

Remark 24. Given an operator T : V → V and a polynomial p ∈ F[x], then null p(T ) and range p(T ) are
invariant under T . Indeed, assume that v ∈ null p(T ), then p(T )◦T (v) = T ◦p(T )(v) = T (0) = 0. Similarly,
if for w ∈ range p(T ) then w = p(T )(v) for some v ∈ V and we have T (w) = T ◦ p(T )(v) = p(T ) ◦ T (v) =
p(T )(T (v)), thus T (w) ∈ range p(T ).

10. Feb. 22, 2024

10.1. The minimal polynomial. The following is one of the most important results of this course.

Proposition 4. Let T : V → V be an operator on a finite-dimensional complex vector space V . Then T
has an eigenvalue.

Proof. Let n = dimV and consider v ∈ V a non-zero vector. The set {v, Tv, . . . , Tnv} is not linearly
independent, since it has size n+1 which is larger than the dimension of V . Thus, there exist a0, a1, · · · , an
such that

n∑
i=0

aiT
i(v) = 0.

We let p(T ) =
∑n
i=0 aiT

i. Notice that we can assume that p(T ) has the smallest possible degree. By
Theorem 2 there exist λ ∈ C such that p(λ) = 0. Let q ∈ C[z] such that p(z) = (z − λ)q(z). Thus, we have:

(7) 0 = p(T )(v) = (T − λ IdV )(q(T )(v)).

Since deg q < deg p we have q(T )(v) ̸= 0. Thus, q(T )(v) is an eigenvector of T with eigenvalue λ. □

Example 20. Let T : P(C) → P(C) be given by Tp(z) := zp(z). We claim that T has no eigenvalues.
Indeed, assume by contradiction that λ ∈ C is an eigenvalue of T , i.e. there exist q ∈ P(C) such that

Tq(z) = zq(z) = λq(z).

However, this is a contradiction, since deg Tq > deg λq.

Proposition 5. Given a finite-dimensional vector space V and an operator T : V → V , there exist an
unique monic10 polynomial p ∈ F[x] such that p(T ) = 0 and deg p ≤ dimV .

Proof. We induce on dimV . For dimV = 0 then T = IdV and we can take p = 1 the constant polynomial
with value 1.

Let n = dimV ≥ 1 and assume that the result holds for every vector space W over F of dimension
(stricly) less than n. Consider v ∈ V a non-zero vector, then {v, Tv, . . . , Tnv}} are linearly dependent and
Lemma 2 implies that there exist m ≤ n such that

Tmv =

m−1∑
i=0

aiT
iv

10A polynomial p(x) =
∑n

i=0 aix
i of degree n is said to be monic if an = 1.
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for some scalars a0, . . . , am−1. Thus, p(T ) := Tm −
∑m−1
i= aiT

i is such that p(T )(v) = 0. Notice that
p(T )(T iv) = T i ◦ p(T )(v) = 0 for every i ≥ 1. The set {Tv, T 2v, . . . , Tm−1v} is linearly independent and
Span {Tv, T 2v, . . . , Tm−1v} ⊆ null p(T ), which implies that:

dim range p(T ) ≤ n−m.

By Remark 24 range p(T ) ⊆ V is subspace invariant under T . Thus, we can consider:

T |range p(T ) : range p(T ) → range p(T )

and we notice that dim range p(T ) < n, since m ≥ 1. Thus the inductive hypothesis implies that there exist
an unique monic polynomial r ∈ F[x] such that

r(T |range p(T )) = 0, and deg r < dim range p(T ) ≤ n−m.

Hence for all v ∈ V we have:
rp(T )(v) = r(p(T )(v)) = 0,

i.e. rp(T ) = 0. And deg rp ≤ n−m+m = n. This finishes the proof of the existence of a polynomial.
Assume that there exist two monic polynomials p, q ∈ F[x] such that p(T ) = q(T ) = 0 and they are both

of minimal degree. Notice that deg p− q < deg p. Assume that p− q ̸= 0, then we can divide p− q by the
coefficient of its highest power to make it a monic polynomial of degree less than p, which is a contradiction.
Thus, p = q. This finishes the proof. □

Definition 29. Given an operator T : V → V on a finite-dimensional vector space the unique monic
polynomial pT

11 determined by Proposition 5 is called the minimal polynomial of T .

Example 21. Consider T : Fn → Fn given by T (x1, . . . , xn) = (x1 + · · ·+ xn, . . . , x1 + · · ·xn). Notice that
for any i ∈ {1, . . . , n} we have v0 := T (ei) = (1, . . . , 1). And that T (v0) = nv0, i.e. v0 is an eigenvector with
eigenvalue n.

Also notice that T (ei − ei+1) = 0 for 1 ≤ i ≤ n− 1, i.e. ei − ei+1 are all eigenvectors with eigenvalue 0.
Thus, for any v =

∑n
i=1 aiei we have:

T (v) = (

n∑
i=1

ai)v0.

Since T (v0) = nv0, we obtain that
T 2(v)− nT (v) = 0

for every v ∈ V . As T (v) ̸= λv for every v ∈ V , we have that p(T ) = T 2 − T is the minimal polynomial of
T .

Remark 25. It can be sometimes tricky to compute the minimal polynomial of an operator, you should
read the discussion on page 145-146 just after Definition 5.24. See also, Example 5.26 for a concrete example
of how one can compute the minimal polynomial.

The following illustrate the relation between the minimal polynomial and eigenvalues of an operator.

Lemma 32. Given T : V → V an operator on a finite-dimensional vector space over F, let pT be its minimal
polynomial. For λ ∈ F the following are equivalent:

(1) pT (λ) = 0, i.e. λ is a root of pT ;

(2) λ is an eigenvalue of T .

Proof. (1) ⇒ (2) by Lemma 28 we can write pT (x) = (x−λ)q(x) for some monic polynomial q ∈ F[x]. Then
we have p(T ) = (T − λ)q(T ) = 0, which gives

(T − λ IdV )q(T )(v) = 0,

for every v ∈ V . Now, since deg q < deg pT , there exist at least one non-zero vector v ∈ V such that
q(T )(v) ̸= 0, which implies that (T − λ IdV )(v) = 0, i.e. v is an eigenvector with eigenvalue λ.

(2) ⇒ (1) let v ∈ V be such that T (v) = λv. By applying T repeatedly we obtain T k = λkv, which
implies:

pT (T )v = p(λ)v.

Since pT (T )(v) and v ̸= 0, we have pT (λ) = 0, as required. □

11We sometimes will use the notation pT for the minimal polynomial associated to T .
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Corollary 12. Let T : V → V be an operator on a finite-dimensional vector space over C the minimal
polynomial of T is given by:

p(z) =

m∏
i=1

(z − λi),

where each λi is an eigenvalue of T .

Proof. This is a direct consequence of Theorem 2 and Lemma 32. □

Warning 2. Notice that in Corollary 12 the roots λi might appear multiple times. Here is an example.
Consider T : C2 → C2 given by T (x1, x2) = (x1, x1+x2). We know that T should have a minimal polynomial
of degree 2, since T is not a multiple of the identity. We want to find a, b ∈ C such that

(T 2 + aT + b)(e1) = 0, and (T 2 + aT + b)(e2) = 0.

The first equation gives 1 + a + b = 0, while the second gives 1 + a + b = 0 and 2 + a = 0. We solve for
a = −2 and b = 1. Thus, we have:

p(T ) = T 2 − 2T + 1 = (T − 1)2.

The following result is very useful for understanding how the minimal polynomial interacts with other
polynomials we can write down from an operator.

Lemma 33. Let T : V → V be an operator on a finite-dimensional vector space and consider a polynomial
q ∈ F[x]. Then q(T ) = 0 if and only if pT divides q.

Proof. By Lemma 29 there exist r, s ∈ F[x] such that

q = pT s+ r

with deg r < deg p. Then we have:

q(T ) = pT (T )s(T ) + r(T ) = 0.

We claim that r is the 0 polynomial. Indeed, if that were not the case then r divided by the coefficient of
its highest term would be a monic polynomial of degree smaller than deg pT such that r(T ) = 0, which is a
contradiction with pT being the minimal polynomial. Thus, q is a multiple of pT as claimed.

Assume that q(x) = pT (x)s(x), then clearly we have q(T ) = pT (T )s(T ) = 0. □

Corollary 13. Let T : V → V be an operator on a finite-dimensional vector space. Then T is invertible if
and only if pT has a non-zero constant term.

Proof. Recall that: by Lemma 30

0 is an eigenvalue ⇔ T is not invertible,

by Lemma 30. And that:

0 is an eigenvalue ⇔ 0 is a root of pT

by Lemma 32. It is clear that 0 is a root of pT if and only if the constant term of pT vanishes. □

The next result is the first general statement about the existence of eigenvalues for operators on real
vector spaces.

Proposition 6. Let T : V → V be an operator on a finite-dimensional real vector space V and assume that
dimV is odd. Then T has an eigenvalue.

Proof. Let dimV = 2n+ 1, we will use induction on n to prove the result.
The base case is clear, since when V = R any operator is simply given by scalar multiplication.
Let n ≥ 1 and assume the result holds for all V such that dimV = 2k + 1 and k < n. Let pT be

the minimal polynomial of T . If pT is a multiple of (x − λ) then by Lemma 32 λ is an eigenvalue and
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we are done. So we can assume that there exist b, c ∈ R and a monic polynomial q ∈ R[x] such that
pT (x) = q(x)(x2 + bx+ c) and that b2 < 4c. Then

p(T ) = q(T )(T 2 + bT + c),

which implies that q(T )|range(T 2+bT+c) = 0. Since deg q < deg p we have that range(T 2 + bT + c) ̸= V . By

Theorem 1 we have:
dimV = dimnull(T 2 + bT + c) + dim range(T 2 + bT + c).

Now, dimnull(T 2 + bT + c) is even by Lemma 34 below, which implies that dim range(T 2 + bT + c), since
dimV is odd. Thus, T |range(T 2+bT+c) has an eigenvalue by the inductive hypothesis, which implies that T

has an eigenvalue. □

Lemma 34. Let T : V → V be an operator on a finite-dimensional real vector space. Consider b, c ∈ R
such that b2 < 4c. Then dimnull(T 2 + bT + c) is even.

Proof. By considering T |null(T 2+bT+c) we can assume that null(T 2 + bT + c) = V . Assume there are λ ∈ R
and v ∈ V such that Tv = λV , then we have:

(T 2 + bT + c)v = (λ2 + bλ+ c)v =

(
(λ+

b

2
)2 + c− b2

4

)
v,

and since (λ+ b
2 )

2 + c− b2

4 > 0, we obtain that v = 0, i.e. T has no eigenvectors.
Let U ⊆ V be the largest even-dimensional subspace invariant under T . If U = V we are done. So

assume that there exist w ∈ V such that w /∈ U . Notice that W := Span {w, Tw} is invariant under T , since
T 2w = −bTw − cw. Also dimW = 2, otherwise w would be an eigenvector of T . Moreover, it is clear that
U ∩W = {0}, otherwise it would be a one-dimensional subspace invariant under T . So we have:

dim(U +W ) = dimU + dimW − dimU ∩W = dimU + 2.

Thus, we produced a larger invariant subspace U ⊂ U +W ⊂ V , which contradicts the assumption that
U ̸= V . This finishes the proof. □

11. Feb. 26, 2024

11.1. Upper-Triangular matrices. In this section we discuss the relation between finding invariant sub-
spaces of an operator and being able to write a matrix in upper-triangular form.

Lemma 35. Let T : V → V be an operator on a finite-dimensional vector space and BV = {v1, . . . , vn} a
basis of V . Then the following are equivalent:

(1) the matrix M(T,BV ) associated to T (see Notation 4) is upper-triangular;

(2) T (vi) ∈ Span (v1, . . . , vi) for every i ∈ {1, . . . , n};

(3) Span (v1, . . . , vi) is invariant under T for every i ∈ {1, . . . , n}.

Proof. (1) ⇒ (2). By assumption for each i ∈ {1, . . . , n} we have

T (vi) =

i∑
j=1

ajvj ,

for some constants aj , i.e. T (vi) ∈ Span (v1, . . . , vi).
(2) ⇒ (3). For any i ∈ {1, . . . , n}, notice that T (vj)Span (v1, . . . , vi) for every 1 ≤ j ≤ i. Thus

T (Span (v1, . . . , vi)) ⊆ Span (v1, . . . , vi).
(3) ⇒ (1). For each i ∈ {1, . . . , n} we have

T (vi) ∈ Span (v1, . . . , vn),

i.e. there exist ai,j ∈ F such that

T (vi) =

i∑
j=1

ai,jvj .

Since M(T,BV ) := (ai,j)1≤i,j≤n, the claim follows. □
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Exercise 34. Let T : V → V be an operator on a finite-dimensional vector space and BV = {v1, . . . , vn} a
basis of V . Assume that

(8) M(T,BV ) :=



λ1 ∗
. . . · · · ∗

0 λ2
. . .

. . . ∗
...

. . .
. . .

. . . ∗

0
. . .

. . . λn−1 ∗
0 0 · · · 0 λn


for some scalars λ1, . . . , λn ∈ F. Prove that

(T − λ1 · IdV ) · . . . · (T − λn · IdV ) = 0.

Corollary 14. Let T : V → V be an operator on a finite-dimensional vector space. Assume that for some
basis BV = {v1, . . . , vn}, the matrix M(T,BV ) has the form (8). Then the eigenvalues of T are precisely
λ1, . . . , λn.

Proof. Notice that T (v1) = λ1v1 and v1 is non-zero, since it is part of a basis. Thus, λ1 is one eigenvalue.
For any i ∈ {2, . . . , n} notice that

(T − λi)vi ∈ Span (v1, . . . , vi−1).

Thus, T − λi|Span (v1,...,vi))
factors as follows:

T − λi|Span (v1,...,vi))
: Span (v1, . . . , vi) → Span (v1, . . . , vi−1).

Since i = dimSpan (v1, . . . , vi) > Span (v1, . . . , vi−1) = i − 1., the linear map T − λi|Span (v1,...,vi))
is not

injective. So there exists v ∈ Span (v1, . . . , vi), v ̸= 0 such that (T − λi)v = 0, so λi is an eigenvalue of T .
This proves that {λ1, · · · , λn} are all eigenvalues.

One needs to argue that there are none others. Let q(z) :=
∏n
i=1(z − λi), then q(T ) = 0; then Lemma

33 implies that q is a multiple of pT , the minimal polynomial. Thus, Lemma 32 imply that all eigenvalues
of T are of q, hence contained in the list {λ1, . . . , λn}. This finishes the proof. □

Let’s now analyze an example that illustrates the relation between a property of the minimal polynomial
and the existence of upper-triangular matrix representation.

Example 22. Consider T : R4 → R4 given by T (x1, x2, x3, x4) = (−x2, x1, 2x1 + 3x3, x3 + 3x4). For B the
standard basis of R4 we have:

M(B, T ) =


0 −1 0 0
1 0 0 0
2 0 3 0
0 0 1 3

 .

You can use some computation tool12 to get that the minimal polynomial of T is:

pT (x) = x4 − 6x3 + 10x2 − 6x+ 9.

Over the real numbers we have the factorization:

pT (x) = (x2 + 1)(x− 3)2,

where the term x2 + 1 can’t be factored further. However, over the complex numbers we have:

pT (z) = (z − i)(z + i)(z − 3)2.

Now, with respect to the basis B′ = {(4−3i,−3−4i,−3+i, 1), (4+3i,−3+4i,−3−i, 1), (0, 0, 1, 0), (0, 0, 0, 1)}
the operator T is given by:

M(B′, T ) =


i 0 0 0
0 −i 0 0
0 0 3 1
0 0 0 3

 .

12I tried ChatGPT and the result was terrible. But WolframAlpha did, tough they called it the characteristic polynomial,
so one needs to check that is actually the minimal polynomial.

https://www.wolframalpha.com
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Lemma 36. Let T : V → V be an operator on a finite-dimensional vector space. Then the following are
equivalent:

(1) there exists a basis B of V , such that M(B, T ) is upper-triangular;

(2) the minimal polynomial pT (x) =
∏m
i=1(x− λi), for some λ1, . . . , λm ∈ F.

Proof. (1) ⇒ (2) let {α1, . . . , αn} be the diagonal entries of M(B, T ) and define q(x) :=
∏n
i=1(x − αi).

Lemma 33 implies that pT divides q, so pT =
∏m
i=1(x− λi) for a subset {λ1, . . . , λm} ⊆ {α1, . . . , αn}.

(1) ⇒ (2) we proceed by induction on m. For m = 1, the claim is clear, since T = λ1 IdV . Assume the
result holds for all k < m. Let U := range(T − λm IdV ), it is clear that U is invariant under T . Consider

T |U , by Exercise 34 and Lemma 33 we see that
∏m−1
i=1 (x− λi) is a multiple of pT |U .

By the inductive hypothesis, there exists BU = {u1, . . . , uk} a basis of U , such that M(BU , T |U ) is
upper-triangular. Let BV = {u1, . . . , uk, v1, . . . , vl} be an extension of BV to a basis of V . For each
i ∈ {1, . . . l} we have:

T (vi) = (T − λm)vi + λmvi ∈ Span {u1, . . . , uk, vi} ⊂ Span {u1, . . . , uk, v1, . . . , vi}.

Thus, Lemma 35 implies that M(BV , T ) is upper-triangular. □

Corollary 15. Let T : V → V be an operator on a finite-dimensional vector space over C, then there exist
a basis BV of V , such that M(BV , T ) is upper-triangular.

Proof. Left to the reader as an exercise. □

Warning 3. Notice that in BV = {v1, . . . , vn} the basis given in Corollary 15, a priori, only the vector v1
is an eigenvector with eigenvalue λ1.

From Math2101, you learned how to transform a matrix into row echelon form (recall it here). The row
echelon form of a matrix has no relation with a triangular form whose existence Corollary 15 guarantes. For
instance, one can not read off the eigenvalues of a matrix from its row echelon form. However, in contrast
with Gauss elimination, there is no method to compute the upper-triangular form from Corollary 15.

12. Mar. 11, 2024

12.1. Diagonalizable Operators. We start this session with a definiton.

Definition 30. Given a linear operator T : V → V and λ ∈ F. The eigenspace corresponding to λ is

E(λ, T ) := null(T − λ IdV ),

i.e. E(λ, T ) = Span {v1, . . . , vn}, where v1, . . . , vn are all the eigenvectors of λ.

Lemma 37. Let T ∈ L(V ) and λ1, . . . , λm be distinct eigenvalues of T , then

(9) E(λ1, T ) + · · ·+ E(λm, T ) ⊆ V

is a direct sum.

Proof. This follows directly from Lemma 31. Make sure you understand why! □

Proposition 7. Assume that V is finite-dimensional. Let T ∈ L(V ) and λ1, . . . , λm ∈ F be a list of distinct
eigenvalues. Then the following are equivalent:

(1) there exist a basis BV such that M(BV , T ) is a diagonal matrix;

(2) there exist a basis BV consisting of eigenvectors of T ;

(3) V = E(λ1, T )⊕ · · · ⊕ E(λm, T );

(4) dimV = dimE(λ1, T ) + · · ·+ dimE(λm, T ).

https://en.wikipedia.org/wiki/Row_echelon_form
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Proof. (1) ⇔ (2) is clear.
(2) ⇒ (3) let {λ1, . . . , λm} be the set of eigenvalues of T and define BVi

:= {v ∈ BV | T (v) = λiv} for
1 ≤ i ≤ m. It is clear that E(λi, T ) = Span (BVi

). Moreover, since BV = ⊔1≤i≤mBVi
is a disjoint union we

obtain V = SpanBV = ⊕1≤i≤mSpanBVi .
(3) ⇒ (4) follows from Exercise 20.
(4) ⇒ (3) let BVi

be a basis of E(λi, T ) for each i ∈ {1, . . . ,m}. We claim that {u1, . . . , un} = BV =
∪1≤i≤mBi is a basis of V . Indeed, since |BV | = dimV it is enough to check that BV is linearly independent.
Assume that there exist ai ∈ F such that

n∑
i=1

aiui = 0.

We can arrange such that the sum becomes:

m∑
j=1

vj = 0,

where vj ∈ E(λj , T ). By Lemma 31 the set {v1, . . . , vm} is linearly independent, since they have different
eigenvalues. Thus each vj = 0, as each vj =

∑
i∈Ij aiui with {ui}Ij a basis of E(λj , T ) we have that each

collection {ai}i∈Ij consists of only zeros, which gives that {ai}1≤i≤n all vanish.

(3)⇒ (2) for each 1 ≤ i ≤ m letBi := {vi1, . . . , viki} be a basis of E(λi, T ). We claim thatBV = ∪1≤i≤mBi
is a basis of V (see Exercise 20). □

Definition 31. We say that an operator T : V → V is diagonalizable if it satisfies one of the equivalent
conditions of Proposition 7.

Remark 26. Definition 31 gives a name to a collection of equivalent mathematical properties. Many
definitions in Mathematics work the same way. Something is made into a definition to summarize many
important facts about a mathematical object. An interesting example to read about is the definition
derivative of a function. Notice that it is easier to envision how to generalize some of the conditions in
Proposition 7 to infinite-dimensional vector space, but not others.

Corollary 16. Let T : V → V be an operator on a finite-dimensional vector space. Assume that T has
dimV distinct eigenvalues, then T is diagonalizable.

Proof. Let {v1, . . . , vn} be a collection of eigenvectors for {λ1, . . . , λn}. By Lemma 31 we see that {v1, . . . , vn}
is linearly independent. Also Span (vi) ⊆ E(λi, T ) for each i. Thus, by dimension reasons we obtain
Span (vi) = E(λi, T ), which implies that V = ⊕mi=1E(λi, T ). That is T is diagonalizable by Proposition
7. □

Exercise 35. Give an example of a diagonalizable operator T : V → V such that T does not have dimV
distinct eigenvalues.

We record the following important relation between diagonalizable and the minimal polynomial.

Lemma 38. Let T : V → V be a operator on a finite-dimensional vector space. Then T is diagonalizable if
and only if the minimal polynomial pT =

∏m
i=1(x− λi) where {λ1, . . . , λm} are distinct eigenvalues.

Proof. Left as an exercise in HW 3. □

12.2. Inner Products and Norms. The following is a quick review of concepts discussed in Math2101.
From now on F = R or F = C.

Definition 32. Let V be a vector space. An inner product is a function ⟨−,−⟩ : V × V → F satisfying:

• (positivity) ⟨v, v⟩ ∈ R>0 for every v ∈ V ;

• (definiteness) ⟨v, v⟩ = 0 if and only if v = 0;

• (additivity on the first slot) ⟨v1 + v2, u⟩ = ⟨v1, u⟩+ ⟨v2, u⟩ for every v1, v2, u ∈ V ;

• (additivity on the first slot) ⟨av, u⟩ = a ⟨v, u⟩ for every v, u ∈ V and a ∈ F;

• (conjugate symmetry) ⟨v, u⟩ = ⟨u, v⟩.

https://www.math.toronto.edu/mccann/199/thurston.pdf
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Notice that for F = R the last equation becomes ⟨v, u⟩ = ⟨u, v⟩. An inner produced space is the data of a
pair (V, ⟨−,−⟩V ), where V is a vector space over F and ⟨−,−⟩V : V × V → F is an inner product.

Example 23. (i) Let V = Rn, then (−) · (−) : Rn × Rn → R given by

(x1, . . . , xn) · (y1, . . . , yn) :=
n∑
i=1

xiyi

is an inner product, sometimes refered to as the dot product.

(ii) Let V = Cn, then (−) · (−) : Cn × Cn → C given by

(x1, . . . , xn) · (y1, . . . , yn) :=
n∑
i=1

xiyi,

is an inner product, also refered to as the dot product.

(iii) More generally, given c1, . . . , cn ∈ R>0 a collection of positive numbers, then

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ =
n∑
i=1

cixiyi

defines an inner product on bRn or Cn.

(iv) ⟨−,−⟩ : P(R)× P(R) → R given by

⟨p, q⟩ := p(0)q(0) +

∫ 1

−1

p′q′.

We list some basic consequences of the definition.

Lemma 39. Let V be an inner product space.

(i) ⟨−, v⟩ ∈ V ∗ for every v ∈ V ;

(ii) for F = R we also have ⟨v,−⟩ ∈ V ∗ for every v ∈ V .

Proof. Left to the reader. □

Exercise 36. Convince yourself that (ii) in Lemma 39 does not hold for F = C.

Definition 33. A norm on a vector space is a function ∥−∥ : V → R satisfying:

(i) ∥v∥ ≥ 0 for every v ∈ V ;

(ii) ∥v∥ = 0 if and only if v = 0;

(iii) ∥av∥ = |a| ∥v∥ for every v ∈ V and a ∈ F;

(iv) (triangle inequality) for every u, v ∈ V we have ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

A normed vector space is the data of a pair (V, ∥−∥) where V is a vector space and ∥−∥ is a norm on V .

Example 24. (i) Given a vector space V with an inner product ⟨−,−⟩ : V ×V → F. Then ∥v∥ := ⟨v, v⟩1/2
is a norm on V .

(ii) Consider V = Rn and let p ∈ Z≥1 be an integer, then:

∥(x1, . . . , xn)∥ := (|x1|p + · · ·+ |xn|p)1/p

defines a norm.

The following are immediate properties:

Lemma 40. Let (V, ∥−∥) be a normed vector space, then
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(i) v = 0 if and only if ∥v∥ = 0;

(ii) ∥av∥ = |a| ∥v∥ for every a ∈ F and v ∈ V .

Proof. Exercise for the reader. □

Definition 34. A pair of vectors u, v ∈ V in an inner product space are said to be orthogonal if ⟨u, v⟩ = 0.

Here are a couple of basic results relating to orthogonal vectors that we leave as an exercise as well.

Lemma 41. Let V be an inner product space.

(i) let v ∈ V such that ⟨v, u⟩ = 0 for every u ∈ V , then v = 0;

(ii) (Pythagorean theorem) ∥u+ v∥2 = ∥u∥2 + ∥v∥2 for every u, v ∈ V ;

(iii) For every u, v ∈ V such that v ̸= 0 we have u = cv + w, where

c =
⟨u, v⟩
∥v∥2

, w = u− ⟨u, v⟩
∥v∥2

v and ⟨w, v⟩ = 0,

i.e. u can be written as a scalar multiple of v plus a scalar multiple of a vector w, which is orthogonal
to v.

The following is a rather important inequality:

Lemma 42 (Cauchy–Schwartz). For any u, v ∈ V in an inner product space, we have:

| ⟨u, v⟩ | ≤ ∥u∥ ∥v∥ .

Moreover, the above is an equality if and only if v = au for some a ∈ F.

The Cauchy–Schwartz inequality has the following two consequences which have a geometrical interpre-
tation:

Corollary 17. Let u, v ∈ V be two vectors in an inner product space, then

(i) (triangle inequality) ∥u+ v∥ ≤ ∥u∥+ ∥v∥;

(ii) (parallelogram equality) ∥u+ v∥+ ∥u− v∥ = 2(∥u∥2 + ∥v∥2).

Proof. Exercise! □

Example 24 poses the question if we can go back, that is, given (V, ∥−∥) a normed vector space, is there
an inner product ⟨−,−⟩ : V × V → F such that ∥v∥ = ⟨v, v⟩ for every v ∈ V ?

Exercise 37. Given a normed vector space prove that there an inner product ⟨−,−⟩ : V × V → F such
that ∥v∥ = ⟨v, v⟩ for every v ∈ V if and only if ∥−∥ satisfies the parallelogram equality (see Corollary 17
(ii)).

12.3. Orthonormal bases.

Definition 35. Given V an inner product space, a subset of vectors S ⊂ V is called orthonormal if for
every u, v ∈ S we have:

⟨u, v⟩ =

{
1 if u = v

0 else
.

Exercise 38. (i) The standard basis of Cn.

(ii) Let V = C([−π, π]) denote the vector space of continuous real-valued functions with inner product
given by ⟨f, g⟩ :=

∫ π
−π f(x)g(x)dx. Then the set{

1√
2π
,
cosx√
2π
,
cos 2x√

2π
, · · · , cosnx√

2π
,
sinx√
2π
, · · · , sinnx√

2π

}
is an orthonormal list of vectors. Check this!
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Here are a couple of consequences of having a list of orthonormal vectors.

Lemma 43. Let S = {e1, . . . , en} ⊂ V be an orthonormal set. Then

(i) ∥a1e1 + · · ·+ anen∥2 =
∑n
i=1 |ai|2;

(ii) S is linearly independent;

(iii) (Bessel’s inequality) for every v ∈ V we have:

n∑
i=1

| ⟨v, ei⟩ |2 ≤ ∥v∥2 .

Proof. For (i) we proceed by induction. The case n = 1 is ∥a1e1∥2 = |a1|2 ∥e1∥2 = |a1|2. Now assume the
result holds for n− 1, Lemma 41 (ii) gives:

∥a1e1 + · · ·+ anen∥2 = ∥a1e1 + · · ·+ an−1en−1∥2 + ∥anen∥2 =

n−1∑
i=1

|ai|2 + |an|2 =

n∑
i=1

|ai|2.

For (ii) assume that there are a1, . . . , an ∈ F such that

a1e1 + · · ·+ anen = 0.

Then we have ∥a1e1 + · · ·+ anen∥ = 0, which implies
∑n
i=1 |ai|2 = 0 by (i). Since all |ai|2 ≥ 0, we obtain

that a1 = · · · = an = 0.
For (iii), let u :=

∑n
i=1 ⟨v, ei⟩ ei and w = v − u. Notice that ⟨w, ei⟩ = 0 for all ei ∈ S. Thus ⟨u,w⟩ = 0.

Now we compute:

∥v∥2 = ∥u∥2 + ∥w∥2 ≥ ∥u∥2 =

n∑
i=1

| ⟨v, ei⟩ |2,

where the first equality is by Lemma 41 (ii) and the last follows from (i). □

Definition 36. Given V an inner product space an orthonormal basis is a basis S which is also an or-
thonormal set.

Remark 27. Notice that by Lemma 43 (ii) if one is given an orthonormal subset S ⊂ V such that
|S| = dimV , then S is an orthonormal basis.

Example 25. The set {( 12 ,
1
2 ,

1
2 ,

1
2 ), (

1
2 ,

1
2 ,−

1
2 ,−

1
2 ), (

1
2 ,−

1
2 ,−

1
2 ,

1
2 ), (−

1
2 ,

1
2 ,−

1
2 ,

1
2 )} ⊂ F4 is an orthonormal

basis of F4.

Here is a nice consequence of using an orthonormal basis for an inner product space.

Lemma 44. Let {e1, . . . , en} ⊂ V be an orthonormal basis of an inner product space V .

(i) v =
∑n
i=1 ⟨v, ei⟩ ei;

(ii) (Parseval’s identity) ∥v∥ =
∑n
i=1 | ⟨v, ei⟩ |2;

(iii) ⟨u, v⟩ =
∑n
i=1 ⟨u, ei⟩ ⟨v, ei⟩.

13

Proof. Left to the reader. □

The natural question to ask now is if given a basis B of an inner product space V can we modify B into
an orthonormal basis. The following result says this is always possible in finite dimension.

Theorem 3 (Gram–Schmidt procedure). Let {v1, . . . , vn} be a basis of an inner product space V . Induc-
tively, define e1 := v1

∥v1∥ and

fn := vn −
n−1∑
i=1

⟨vi, fi⟩
∥fi∥2

fi and en :=
fn
∥fn∥

.

Then for every 1 ≤ k ≤ n:

(10) {e1, . . . , ek} is an orthonormal set and Span (e1, . . . , ek) = Span (v1, . . . , vk).

In particular, {e1, . . . , en} ⊂ V is an orthonormal basis.

13In fact, I like to remember this formula as: ⟨u, v⟩ =
∑n

i=1 ⟨u, ei⟩ ⟨ei, v⟩.
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Proof. We proceed by induction on (10). The case k = 1 is clear, since ∥e1∥ = 1 and v1 = ∥v1∥ e1.
Assume the result holds for every 1 ≤ ℓ ≤ k− 1. Since {v1, . . . , vk} is linearly independent we have that

vk /∈ Span (v1, . . . , vk−1) = Span (e1, . . . , ek−1) = Span (f1, . . . , fk−1). Thus, fk ̸= 0, so ek is well-defined. It
is clear that ∥ek∥ = 1.

We check that ⟨ek, ej⟩ = 0 for every 1 ≤ j ≤ k − 1.

⟨ek, ej⟩ =
1

∥fk∥ ∥fj∥
⟨fk, fj⟩

=
1

∥fk∥ ∥fj∥

(
vk −

k−1∑
i=1

⟨vk, fi⟩
∥fi∥2

fi, fj

)

=
1

∥fk∥ ∥fj∥

(
⟨vk, fj⟩ −

k−1∑
i=1

⟨vk, fi⟩
∥fi∥2

⟨fi, fj⟩

)

=
1

∥fk∥ ∥fj∥
(⟨vk, fj⟩ − ⟨vk, fj⟩)

= 0.

This gives that {e1, . . . , ek} is orthonormal. Since by definition we have vk ∈ Span (e1, . . . , ek) by the
inductive hypothesis we have:

Span (v1, . . . , vk) ⊆ Span (e1, . . . , ek).

Since both lists are linearly independent and have the same number of elements we have that their span are
the same by Lemma 7 (4). This finishes the proof. □

Exercise 39. Work out an orthonormal basis for P2(R).

These are direct consequence of Theorem 3.

Corollary 18. (i) Every finite-dimensional inner product space V has an orthonormal basis.

(ii) Every orthonormal subset S ⊂ V extends to an orthonormal basis.

Proof. For (i) by Corollary 2 (1) a basis exists, then applying Theorem 3 we get the result.
For (ii), we know that S is linearly independent by 43 (ii), then Corollary 2 (2) allows us to extend this

set to a basis, which then applying Theorem 3 can be made into an orthonormal basis. □

We also have a consequence of the Gram–Schmidt procedure to the question of whether there exist a
basis such that a linear operator is upper-triangular with respect to such a basis.

Lemma 45. Let V be a finite-dimensional inner product space and consider T ∈ L(V ). The following are
equivalent:

(1) there exists a basis BV of V such that M(T,BV ) is upper-triangular;

(2) there exists an orthonormal basis B′
V of V such that M(T,B′

V ) is upper-triangular.

Proof. We only need to prove (1) ⇒ (2). Let BV = {v1, . . . , vn} be a basis for which T is upper-triangular.
Notice that because of Lemma 35 it is enough to notice that applying Theorem 3 we have obtain a set
{e1, . . . , en} such that:

T (Span (e1, . . . , ek)) = T (Span (v1, . . . , vk))

⊆ Span (v1, . . . , vk)

= Span (e1, . . . , ek).

Thus, M(T, {e1, . . . , en}) is upper-triangular. □

Corollary 19 (Schur’s theorem). Let T : V → V be an operator on a complex inner product space. Then
there exists an orthonormal basis BV such that M(T,BV ) is upper-triangular.

Proof. By Corollary 15 there exist a basis B′
V such that M(T,B′

V ) is upper-triangular. By Lemma 45 we
can find BV as claimed. □
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We end this subsection discussing the so-called Riesz representation theorem.

Proposition 8 (Riesz representation). Let V be a finite-dimensional inner product space and λ ∈ V ∗. Then
there exists an unique v ∈ V , such that λ = ⟨−, v⟩.

Proof. The proof comes from trying to find v ∈ V such that the equation λ(u) = ⟨u, v⟩ holds for every u.
Let {e1, . . . , en} be an orthonormal basis of V , we calculate:

λ(u) = λ(⟨u, e1⟩ e1 + · · ·+ ⟨u, en⟩ en)
= ⟨u, e1⟩λ(e1) + ·+ ⟨u, en⟩λ(en)

=
〈
u, λ(e1)e1 + · · ·+ λ(en)en

〉
.

Thus, if we pose v := λ(e1)e1 + · · ·+ λ(en)en, we obtain the desired equality.
Now assume that there exists v′ ∈ V a different vector such that ⟨u, v⟩ = ⟨u, v′⟩ for every u. This implies

that:
⟨u, v − v′⟩ = 0 for every u ∈ V.

In particular, we obtain ∥v − v′∥ = 0, which gives that v = v′. □

13. Mar. 14, 2024

13.1. Orthogonal Complements and Minimization Problems. We begin this subsection with a defi-
nition.

Definition 37. Let U ⊆ V be a subset of an inner product space V . The orthogonal complement of U is:

U⊥ := {v ∈ V | ⟨u, v⟩ = 0 for every u ∈ U}.

Here are a list of direct properties.

Lemma 46. Given a subset U ⊆ V we have:

(i) U⊥ is a subspace of V ;

(ii) {0}⊥ = V ;

(iii) V ⊥ = {0};

(iv) if U is a subspace, then U ∩ U⊥ = {0};

(v) if W ⊆ U is a subset, then U⊥ ⊆W⊥.

Proof. We prove (i). Let v1, v2 ∈ U⊥ and a ∈ F, then by Lemma 39 we have:

⟨u, v1 + av2⟩ = ⟨u, v1⟩+ a ⟨u, v2⟩ = 0 + a · 0 = 0,

that is v1 + av2 ∈ U⊥.
For (ii), notice that for any v ∈ V we have ⟨0, v⟩ = ⟨v, 0⟩ = ⟨v, u− u⟩ = ⟨v, u⟩ − ⟨v, u⟩ = 0.
For (iii) notice that v ∈ V ⊥ implies that ⟨v, v⟩ = 0, which by (ii) from Definition 32 gives that v = 0.
For (iv), again notice that u ∈ U ∩ U⊥ implies ⟨u, u⟩ = 0, which gives u = 0.
For (v), let v ∈ U⊥ and consider ⟨v, w⟩. Since for every w ∈ W ⊆ U , this implies that ⟨v, w⟩ = 0, we

have v ∈W⊥. □

Example 26. (i) Let V = R3 and consider U = {(2, 3, 5)}, then

U⊥ = {(x, y, z) ∈ R3 | 2x+ 3y + 5z = 0}.

(ii) Let U = Span {(2, 3, 5)}, then U⊥ = {(x, y, z) ∈ R3 | 2x+ 3y + 5z = 0}, as well.

(iii) Let e1, . . . , em, f1, . . . , fn be a orthonormal basis of V . Then

Span (e1, . . . , em)⊥ = Span (f1, . . . , fn).

Corollary 20. Given U ⊆ V a subspace of a finite-dimensional inner product space, then U ⊕ U⊥ = V .
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Proof. By Lemma 46 (iv) it is enough to prove that U + U⊥ = V . Let v ∈ V if v ∈ U⊥ then v ∈ U + U⊥.
Assume that v /∈ U⊥ and let u ∈ U such that ⟨u, v⟩ ̸= 0. In particular, we have u ̸= 0, thus Lemma 41 (iii)

implies that we can write v = c−1 · (u − w) where c = ⟨u,v⟩
∥v∥2 ̸= 0 and ⟨u,w⟩ = 0, i.e. w ∈ U⊥. This finishes

the proof. □

We leave the next two statements as an exercise:

Lemma 47. Let U ⊆ V be a subspace of a finite-dimensional inner product space V . Then

(i) dimU⊥ = dimV − dimU ;

(ii) (U⊥)⊥ = U .

We end this section by giving another proof of Proposition 8.

Proposition 9. Given V a finite-dimensional inner product space consider the map Φ : V → V ∗ given by:

Φ(v)(u) := ⟨u, v⟩ .

Then Φ is a bijection.

Proof. First we prove that Φ is surjective. Let φ ∈ V ∗ be a linear functional on V . If φ = 0, then Φ(0) = φ.
So we assume that φ ̸= 0. Notice that nullφ ⊂ V is a subspace of dimension dimV − 1. Indeed, by the
fundamental theorem of linear algebra we have that dimV = dimnullφ + dim rangeφ and rangeφ ̸= 0, so
it is easy to see that rangeφ = F. Then Corollary 20 implies that dim(nullφ)⊥ = 1. Let 0 ̸= v0 ∈ V be a
basis of (nullφ)⊥. We want to find v a scalar multiple of v0 such that Φ(v)(u) = φ(u) for every u ∈ V . Let
v = αv0 for some α ∈ F and applying Lemma 41 (iii) we have that u = cv0 + w for some c ∈ F and w ∈W
such that ⟨w, v0⟩ = 0. Then we have

Φ(v)(u) = ⟨u, v⟩ = ⟨cv0 + w,αv0⟩ = cα ∥v0∥2 = φ(u) = φ(cv0) = cφ(v0),

since by definition of v0, w ∈ nullφ. Thus, we notice that taking α = φ(v0)

∥v0∥2 gives v with the desired property.

We leave it to the reader to check that Φ is injective. □

Warning 4. In Proposition 9 the case where V is a vector space over the real numbers, then Φ is an
isomorphism, i.e. it is also linear. In particular, the proof of Proposition 9 becomes easier since we only need
to check the map is injective. However, over the complex numbers Φ is anti-linear, i.e. Φ(av) = aΦ(v).

Definition 38. Let U ⊆ V be a subspace of a finite-dimensional inner product space. The orthogonal
projection PU : V → V is given by

PU (v) := u,

where v = u+ w is the unique decomposition of v in U ⊕ U⊥.

The following is a list of properties of the orthogonal projection:

Lemma 48. Let U ⊆ V be a subspace of a finite-dimensional inner product space. Then

(i) PU is linear;

(ii) PU (u) = u for every u ∈ U ;

(iii) PU (w) = 0 for every w ∈ U⊥;

(iv) rangePU = U ;

(v) nullPU = U⊥;

(vi) v − Pu(v) ∈ U⊥ for every v ∈ V ;

(vii) P 2
U = PU ;

(viii) ∥PU (v)∥ ≤ ∥v∥ for every v ∈ V ;

(ix) given {e1, . . . , em} ⊂ V an orthonormal basis of U , we have:

PU (v) =

m∑
i=1

⟨v, ei⟩ ei.

Proof. Left as an exercise. □
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13.2. Self-Adjoint and Normal Operators. TODO: Change all the dual notation from before here
from V ∗ to V ∨ and from T ∗ to T∨. Similarly for dual basis and all other related notions and constructions.

Warning 5. Change of notation. I will from this section on change notation so that we free the use of
(−)∗ for adjoint operator. I will revisit the notation for dual space and morphisms to appropriately clear
the ambiguity that is now being introduced.

Before introducing the definitions that follow it is interesting to try to motivate them. We saw in Lemma
45 that if an operator T : V → V is upper-triangular, then we can find an orthonormal basis BV of V such
that M(T,BV ) is upper-triangular. We can ask if the same happens for other conditions on T . For instance,

Question 1. Given T : V → V a diagonalizable operator with respect to some basis BV , can we find an
orthonormal basis B′

V such that M(T,B′
V ) is a diagonal matrix?

The answer to the above question is given by the spectral theorem, which has a slightly different version
over R and over C. To formulate this theorem we need to introduce the following two concepts.

Notice that given T : V →W an operator between two inner product spaces, for every w ∈W we obtain
a functional on V given by

φw : V → F φw(v) := ⟨Tv,w⟩W .

By the Riesz representability theorem, there exist an unique v′ ∈ V such that ⟨v, v′⟩V = φw(v) = ⟨Tv,w⟩W .
Let T ∗(w) := v′, we claim that T ∗ :W → V is linear. Indeed, let w1, w2 ∈W and a ∈ F then we have that
(Make sure you understand each step here!)

⟨v, T ∗(w1 + aw2)⟩V = ⟨Tv,w1 + aw2⟩W
= ⟨Tv,w1⟩W + a ⟨Tv,w2⟩W
= ⟨v, T ∗w1⟩V + ⟨v, aT ∗w2⟩V
= ⟨v, T ∗(w1) + aT ∗(w2)⟩V

holds for every v ∈ V . By the Riesz representability theorem we obtain that T ∗(w1 + aw2) = T ∗(w1) +
aT ∗(w2).

Definition 39. Let T : V →W be an operator between two inner product spaces. The adjoint of T is the
unique linear map T ∗ :W → V such that

⟨Tv,w⟩V = ⟨v, T ∗w⟩W

for all v ∈ V and w ∈W .

Notation 6. From now one we will drop the subscript of V or W from the notaiton of the inner product.

Example 27. (i) Let T : C3 → C2 be given by T (x1, x2, x3) = (2x1, 3x2 + ix3). We calculate the adjoint
of T :

⟨T (x1, x2, x3), (y1, y2)⟩ = ⟨(2x1, 3x2 + ix3), (y1, y2)⟩
= 2x1y1 + 3x2y2 + ix3y2

= ⟨(x1, x2, x3), (2y1, 3y2,−iy2)⟩ .

Thus, T ∗ : C2 → C3 is given by T ∗(y1, y2) = (2y1, 3y2,−iy2).

(ii) Let W be of dimension 1. Fix u ∈ V and x ∈ W define T : V → W by T (v) := ⟨v, u⟩x. We compute
T ∗:

⟨Tv,w⟩ = ⟨⟨v, u⟩x,w⟩
= ⟨v, u⟩ ⟨x,w⟩

=
〈
v, ⟨x,w⟩u

〉
= ⟨v, ⟨w, x⟩u⟩

Thus, T ∗ :W → V is given by T (w) = ⟨w, x⟩u.

Here is a list of properties of passing to the adjoint operator:
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Lemma 49. Let T, S : V →W be two operators between two finite-dimensional inner product spaces. Then:

(i) (S + T )∗ = S∗ + T ∗;

(ii) (λT )∗ = λT ∗, for every λ ∈ F;

(iii) (T ∗)∗ = T ;

(iv) (ST )∗ = T ∗S∗;

(v) (IdV )
∗ = IdV ;

(vi) T is invertible if and only if T ∗ is invertible, in which case (T ∗)−1 = (T−1)∗.

Proof. Exercise. □

We also have properties similar to Lemma 50 describing the relation between the range and null spaces
of the adjoint of an operator in terms of the range and null of the original operator.

Lemma 50. Let T, S : V →W be two operators between two finite-dimensional inner product spaces. Then:

(i) (nullT ∗) = (rangeT )⊥;

(ii) (rangeT ∗) = (nullT )⊥;

(iii) (nullT ) = (rangeT ∗)⊥;

(iv) (rangeT ) = (nullT ∗)⊥.

Proof. Write this! □

It is also very useful to have the following result which relates the adjoint of an operator T to the matrix
representing T in an orthonormal basis.

Lemma 51. Let BV be an orthonormal basis of V and T : V → V an operator. Then

M(T,BV ) = M(T ∗, BV )
†,

where M(T ∗, BV )
† is the conjugate transpose of the matrix M(T,BV ).

Proof. To do. □

Warning 6. In Lemma 51 it is necessary that BV is an orthonormal basis. See Exercise 4 in Worksheet 7.

Finally we can pose the following definition:

Definition 40. Let T : V → V be an operator on an inner product space.

• we say that T is self-adjoint if T = T ∗;

• we say that T is normal if it commutes with T ∗, i.e. TT ∗ = T ∗T .

Example 28. (i) Consider T (x, y) = (3x+ y, x+ 3y) this operator is self-adjoint over R.

(ii) Consider T (x, y) = (2x+ 2iy,−2ix+ 2y). This operator is self-adjoint over C.

(iii) Consider T (x, y) = (2x− 3y, 3x+ 2y). This operator is normal but not self-adjoint.

Here is a characterization of self-adjoint operators.

Lemma 52. Let T : V → V be an operator on a finite-dimensional complex inner space. The following are
equivalent:

(1) T is self-adjoint;

(2) ⟨Tv, v⟩ ∈ R for every v ∈ V .
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Proof. Assume (1), then T − T ∗ = 0 and Remark 28 gives that

(11) ⟨(T − T ∗)v, v⟩ = 0 for every v ∈ V.

Since ⟨T ∗v, v⟩ = ⟨v, T ∗v⟩ = ⟨Tv, v⟩, we have

(12) ⟨Tv, v⟩ − ⟨Tv, v⟩ = 0 for every v ∈ V.

Assume (2), then (12) holds, which implies (11) that by Remark 28 gives that T = T ∗. □

We collect some properties of self-adjoint operators.

Lemma 53. Let T : V → V be a self-adjoint operator, then:

(i) all the eigenvalues of T are real;

(ii) ⟨Tv, v⟩ = 0 for every v ∈ V if and only if T = 0.

Remark 28. Before giving the proof we notice that if T : V → V is an operator on a complex vector space,
then (ii) in Lemma 53 holds without the assumption that T is self-adjoint. Namely, ⟨Tv, v⟩ = 0 for every
v ∈ V if and only if T = 0. Indeed, for every u,w ∈ V consider:

⟨Tu,w⟩ = ⟨T (u+ w), u+ w⟩ − ⟨T (u− w), u− w⟩
4

+
⟨T (u+ iw), u+ iw⟩ − ⟨T (u− iw), u− iw⟩

4
i.

Thus, if ⟨Tv, v⟩ = 0 for every v ∈ V , then we have ⟨Tu,w⟩ = 0 for every v, w ∈ V , which gives that T = 0.
The other direction is clear.

Proof of Lemma 53. For (i), let T (v) = λv for some non-zero v ∈ V . Then

λ ∥v∥2 = ⟨λv, v⟩ = ⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, λv⟩ = λ ∥v∥2 .

Since ∥v∥ ≠ 0 we obtain λ = λ.
For (ii), one direction is clear. Since T is self-adjoint, we have ⟨Tv,w⟩ = ⟨v, Tw⟩ for every v, w ∈ V .

Thus, we obtain:

⟨Tu,w⟩ = ⟨T (u+ w), u+ w⟩ − ⟨T (u− w), u− w⟩
4

,

which implies that ⟨Tu,w⟩ = 0 for every u,w ∈ V , so T = 0. □

We collect some properties of normal operators.

Lemma 54. Let T : V → V be an operator on a finite-dimensional complex inner space. The following are
equivalent:

(1) T is normal;

(2) ∥Tv∥ = ∥T ∗v∥ for every v ∈ V .

Proof. We have the following chain of equivalences:

T is normal ⇔ TT ∗ − T ∗T = 0

⇔ ⟨(TT ∗ − T ∗T )v, v⟩ = 0 for all v ∈ V

⇔ ⟨TT ∗v, v⟩ = ⟨T ∗Tv, v⟩ for all v ∈ V

⇔ ⟨T ∗v, T ∗v⟩ = ⟨Tv, Tv⟩ for all v ∈ V

⇔ ∥T ∗v∥2 = ∥Tv∥2 for all v ∈ V

⇔ ∥T ∗v∥ = ∥Tv∥ for all v ∈ V,

where the second equivalence follows from Lemma 53 (ii). □

We collect some further properties of normal operators that we won’t need for now so we leave the proof
as exercise.

Lemma 55. Let T : V → V be a normal operator. Then
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(i) nullT = nullT ∗;

(ii) rangeT = rangeT ∗;

(iii) V = nullT ⊕ rangeT ;

(iv) T − λ IdV is normal for every λ ∈ F;

(v) if v ∈ V and λ ∈ F, then Tv = λv if and only if T ∗v = λv.

Proof. Exercise. □

14. Mar. 21, 2024

14.1. Spectral Theorem. The goal of this section is to prove the following two results:

Theorem 4 (Real Spectral Theorem). Let F = R and T ∈ L(V ) an operator on a finite-dimensional vector
space over R. Then the following are equivalent:

(1) T is self-adjoint;

(2) there exists an orthonormal basis BV such that M(T,BV ) is a diagonal matrix;

(3) there exists an orthonormal basis BV consisting of eigenvectors of T .

Theorem 5 (Complex Spectral Theorem). Let F = C and T ∈ L(V ) an operator on a finite-dimensional
vector space over C. Then the following are equivalent:

(1) T is normal;

(2) there exists an orthonormal basis BV such that M(T,BV ) is a diagonal matrix;

(3) there exists an orthonormal basis BV consisting of eigenvectors of T .

Warning 7. We stress that condition (2) in Theorem 4 is not equivalent to T being diagonalizable.
Consider the basis {v1, v2} of V = R2 given by v1 = e1 + e2 and v2 = e2. Let T : V → V be defined by

T (v1) = 2v1 and T (v2) = 3v2. By construction T is diagonalizable. However with respect to the standard
basis B = {e1, e2} we have that

M(T,B) =

(
2 0
−1 3

)
M(T ∗, B) =

(
2 −1
0 3

)
.

Thus T ̸= T ∗. See this discussion as well.
Similarly, condition (2) in Theorem 5 is not equivalent to T being diagonalizable. See Exercise 7 in

Worksheet 7. You can also check here for a counter-example.

Proof of Theorem 5. (1) ⇒ (2). By Lemma 45 there exists BV = {e1, . . . , en} an orthonormal basis of V
such that M(T,BV ) is upper-triangular. Let

(13) M(T,BV ) =


a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

. . .
. . .

...
0 · · · 0 an,n


be the matrix representing T . We have

∥Te1∥2 = |a1,1|2 and ∥T ∗e1∥2 =

n∑
i=1

|a1,i|2.

Lemma 54 implies that ∥Te1∥ = ∥T ∗e1∥, thus a1,j = 0 for j ̸= 1. Substituting a1,j = 0 for j ∈ {2, . . . , n}
into (13) we obtain that:

|a2,2|2 = ∥Te2∥2 = ∥T ∗e1∥2 =

n∑
i=2

|a2,i|2.

https://math.stackexchange.com/questions/4661454/self-adjoint-if-and-only-if-diagonalisable
https://math.stackexchange.com/questions/4217982/an-operator-that-is-diagonalizable-but-not-normal
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This implies that a2,j = 0 for j ̸= 2. We continue this process until we obtain that M(T,BV ) is in fact
diagonal.

(2) ⇒ (1) let M(T,BV ) be the diagonal matrix corresponding to T , by Lemma 51 we have that
M(T ∗, BV ) = M(T,BV )

† so M(T ∗, BV ) is also diagonal. In particular, we obtain that

M(T ∗T,BV ) = M(T ∗, BV )M(T,BV ) = M(T,BV )M(T ∗, BV ) = M(TT ∗, BV ),

since diagonal matrices commutes. Since M(−, BV ) is an isomorphism, we obtain T ∗T = TT ∗.
The equivalence (2) ⇔ (3) is clear. □

Before proving Theorem 4 we need a couple of preliminaries. The first is the following:

Proposition 10. Let T : V → V be a self-adjoint operator. Then the minimal polynomial is of the form
pT =

∏m
i=1(x− λi) for a collection of λi ∈ R.

Proof. First assume that F = C. In this case we have that pT =
∏m
i=1(x− λi) by Corollary 12. By Lemma

53 i all λi ∈ R.
For the case F = R, by the factorization of real polynomials Proposition 3 we have that

(14) pT (T ) = a

m∏
i=1

(T − λi)

k∏
j=1

(T 2 + bjT + cj) = 0

where a, λ1, . . . , λm, b1, . . . , bk, c1, . . . , ck ∈ R and for each 1 ≤ j ≤ k we have b2j < 4cj . We can assume that

k is minimal. Now from Lemma 56 below we know that (T 2 + bjT + cj) is invertible whenever b2j < 4cj .

Thus, by multiplying (14) by the inverses of (T 2 + bjT + cj) we obtain that

pT (T ) = a

m∏
i=1

(T − λi) = 0.

This finishes the proof. □

The following is a technical result needed in the proof of the above Proposition.

Lemma 56. Let T : V → V be a self adjoint operator and consider b, c ∈ R such that b2 < 4c. Then the
operator T 2 + bT + c IdV is invertible.

Proof. Since T 2 + bT + c IdV is a map from V to itself, it is enough to check that it is injective. Consider a
non-zero v ∈ V such that (T 2 + bT + c IdV )v = 0. Then we calculate:〈

(T 2 + bT + c IdV )v, v
〉
=
〈
T 2v, v

〉
+ b ⟨Tv, v⟩+ c ⟨v, v⟩

= ⟨Tv, Tv⟩+ b ⟨Tv, v⟩+ c ∥v∥2

≥ ∥Tv∥2 − |b| ∥Tv∥ ∥v∥+ c ∥v∥2

=

(
∥Tv∥ − |b| ∥v∥

2

)2

+

(
c− b2

4

)2

∥v∥

> 0,

where −|b| ∥Tv∥ ∥v∥ ≤ b ⟨Tv, v⟩ follows from the Cauchy–Schwartz inequality, i.e. | ⟨Tv, v⟩ | ≤ ∥Tv∥ ∥v∥. So
we obtain that 0 = ⟨0, v⟩ > 0, which is a contradiction. □

Proof of Theorem 4. (1) ⇒ (2) By Proposition 10 we know that pT is the product of linear factors. Then
Lemma 36 implies that there exists a basis BV such that M(T,BV ) is upper-triangular and Lemma 45
implies that we can assume that BV is orthonormal.

Since BV is orthonormal, Lemma 51 implies that M(T,BV ) = M(T ∗, BV )
t, since the transpose is equal

to the conjugate transpose. Since M(T,BV ) is upper-triangular, this implies that M(T,BV ) is diagonal,
as we needed to prove.

(2) ⇒ (1) there exists BV such that M(T,BV ) is diagonal. Since BV is orthonormal Lemma 51 implies
that M(T ∗, BV ) = M(T,BV )

t = M(T,BV ). Since M(−, BV ) is an isomorphism we obtain T = T ∗.
The equivalence (2) ⇔ (3) is clear. □
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Example 29. (i) Let T : V → V be an operator on a finite-dimensional vector space over C. Assume
that T is normal and has a single eigenvalue. By the Spectral Theorem there exists an orthonormal
basis BV such that

M(T,BV ) =

λ 0
. . .

0 λ


for λ ∈ C. Now consider any other basis B′

V , let C = M(IdV , B
′
V , BV ), then

M(T,B′
V ) = C−1M(T,BV )C = M(T,BV )

since diagonal matrices commute with all other matrices. Thus, we have thatM(T,B′
V ) = M(λ IdV , B

′
V )

for any basis B′
V , which gives that T = λ IdV .

(ii) Let T : V → V be a self-adjoint operator on a real vector space. Assume that 2 and 3 are the only
eigenvalues of T , then

T 2 − 5T + 6 = 0.

Indeed, there exists an orthonormal basis BV such that M(T,BV ) is a diagonal matrix with only 2’s
and 3’s in the diagonal. Then we have:

M(T 2 − 5T + 6, BV ) = M((T − 2)(T − 3), BV ) = M((T − 2), BV )M((T − 3), BV ) = 0,

where the last equality follows because of the following. There exist a proper subset S ⊂ {1, . . . , n}
such that:

M((T − 2), BV )ij =

{
1 for i = j and i ∈ S

0 else,

and

M((T − 3), BV )ij =

{
−1 for i = j and i ∈ {1, . . . , n}\S
0 else.

Since M(−, BV ) is an isomorphism we obtain T 2 − 5T + 6 = 0.

14.2. Positive operators. Given an operator T : V → V a square root of T is an operator S : V → V
such that S2 = T .

Example 30. Let T : F3 → F3 be given by T (x1, x2, x3) = (x3, 0, 0). Then S(x1, x2, x3) = (x2, x3, 0) is a
square root.

The motivation of this section is two-fold:

• we want to understand what happens if we impose a stronger condition than Lemma 52 (2);

• we want to understand when we can find square root of linear maps.

Proposition 11. Let T : V → V be an operator on an inner product space. The following are equivalent:

(i) ⟨Tv, v⟩ ≥ 0, i.e. ⟨Tv, v⟩ ∈ R≥0, for every v ∈ V ;

(ii) T is self-adjoint and all eigenvalues of T are non-negative14;

(iii) there exists an orthonormal basis BV such that M(T,BV ) has only non-negative numbers in the diag-
onal;

(iv) T has a square root satisfying (i);

(v) T has a self-adjoint square root;

(vi) T = R∗R for some R ∈ L(V ).

14By non-negative we mean the eigenvalues belong to R≥0.
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Proof. (i) ⇒ (ii). By Lemma 52 we have that T is self-adjoint. Let λ be an eigenvalue for some non-zero

vector v ∈ V . Then ⟨Tv, v⟩ = λ ∥v∥2 ≥ 0, since ∥v∥ ≠ 0, we obtain λ ≥ 0.
(ii) ⇒ (iii). By Theorem 5 or Theorem 4 we know that there exists an orthonormal basis BV such that

M(T,BV ) is diagonal. Clearly the entries in the diagonal are eigenvalues, and hence we have the claim.
(iii)⇒ (iv). Let {λ1, . . . , λn} denote the diagonal entries of T in the orthonormal basis BV = {v1, . . . , vn}

of V . Let R(vi) :=
√
λivi, where

√
λi denotes the non-negative square root of λi. By expanding any v ∈ V

in the basis {v1, . . . , vn} we can check that ⟨Rv, v⟩ =
∑n
i=1

√
λi| ⟨v, vi⟩ |2, which is non-negative.

(iv) ⇒ (v). This follows from (i) ⇒ (ii).
(v) ⇒ (vi). Since R = R∗ and R2 = T , we get R∗R = T .

(vi) ⇒ (i). Given any v ∈ V we compute ⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ = ∥Rv∥2 ≥ 0. □

Definition 41. We say an operator T : V → V is positive if it satisfies the equivalent conditions of
Proposition 11.

Lemma 57. Let T be positive operator, then there exists an unique positive operator R, such that R2 = T .

Proof. Exercise. □

Notation 7. Let T : V → V be a positive operator, we denote by
√
T the unique positive operator which

is a square root of T , whose existence is guaranteed by Proposition 11 and uniqueness by Lemma 57.

14.3. Singular Value Decomposition.

Definition 42. Let T ∈ L(V,W ), the singular values of T are the non-negative square roots of the eigen-
values of T ∗T , listed in decreasing order, each included as many times as the dimension of corresponding
eigenspace of T ∗T .

We need the following results for this section.

Lemma 58. Let T ∈ L(V,W ), then

(i) T ∗T : V → V is a positive operator;

(ii) nullT ∗T = nullT ;

(iii) rangeT ∗T = rangeT ∗;

(iv) dim rangeT = dim rangeT ∗ = dim rangeT ∗T .

Proof. For (i), notice that (T ∗T )∗ = T ∗(T ∗)∗ = T ∗T by Lemma 49 (iii) and (iv). Thus T ∗T is self-adjoint.
We now calculate:

⟨(T ∗T )v, v⟩ = ⟨Tv, Tv⟩ = ∥Tv∥2 ≥ 0

for every v ∈ V , so T ∗T is positive. Todo! □

Theorem 6. Let T : V → W be a linear map and let {s1, . . . , sm} be the positive singular values of T .
Then there exist orthonormal lists {e1, . . . , em} in V and {f1, . . . , fm} in W such that

Tv = s1 ⟨v, e1⟩ f1 + · · ·+ sm ⟨v, em⟩ fm
for every v ∈ V .

Proof. Let {s1, . . . , sn} be the singular values of T . By Lemma 58 the operator T ∗T is positive, so Theorem
5 or Theorem 4 implies that there exists an orthonormal basis BV = {e1, . . . , en} such that

(15) T ∗Tei = s2i ei

for 1 ≤ i ≤ n. For each j = 1, . . . ,m define fj :=
Tei
si

. Then we have:

⟨fj , fk⟩ =
1

sjsk
⟨Tei, T ek⟩ =

1

sjsk
⟨ei, T ∗Tek⟩ =

sk
sk

⟨ei, ek⟩ =

{
1 if j = k,

0 if j ̸= k;

for every j, k ∈ {1, . . . ,m}. Thus the set {f1, . . . , fm} is orthonormal. Let v ∈ V , then we compute:

Tv = T (

n∑
i=1

⟨v, ei⟩ ei) =
m∑
i=1

⟨v, ei⟩Tei =
m∑
i=1

si ⟨v, ei⟩ fi,

where we drop Tei, for m+ 1 ≤ i ≤ n, since by assumption {sm+1, . . . , sn} are all zero. □

Example 31. Discussion Examples 7.67 and 7.79 from the textbook. Write the examples here.
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15. Mar. 25, 2024

15.1. Generalized Eigenvectors. We start this section by understanding the null space of powers of an
operator.

Lemma 59. Let T ∈ L(V ), then nullT dimV = nullT dimV+k for any k ≥ 0.

Proof. Let v ∈ nullT k for some k ≥ 0, then T k+1(v) = T (T kv) = T (0) = 0, thus v ∈ nullT k+1.
Notice that if nullT k = nullT k+1 for some k ≥ 1, then nullT k = nullT k+i for every i ≥ 1. Indeed,

assume v ∈ nullT k+i, then T i−1v ∈ nullT k+1, which implies that T i−1v ∈ nullT k, that is v ∈ nullT k+i−1.
Continuing in this way, we obtain that v ∈ nullT k. The other inclusion is clear.

Finally, suppose that nullT dimV ⊂ nulldimV+1 is a proper subset. Then we have the sequence:

{0} = nullT 0 ⊂ nullT ⊂ · · · nullT dimV ⊂ nullT dimV

of proper subsets. This implies that dimnullT dimV+1 ≥ dimV+1, which is a contradiction since nullT dimV+1 ⊆
V . □

Lemma 60. For any T ∈ L(V ) we have

nullT dimV ⊕ rangeT dimV = V.

Proof. First we claim that nullT dimV ∩ rangeT dimV = {0}. Assume that v ∈ nullT dimV ∩ rangeT dimV

such that v ̸= 0, then we have v = Tnu for some u ∈ V and Tnv = 0. This gives T 2nu = 0. Since
nullT 2n = nullTn, we get v = Tnu = 0.

Thus, nullT dimV ⊕ rangeT dimV = nullT dimV + rangeT dimV . Moreover, by the fundamental theorem
of linear algebra we have dim(nullT dimV ⊕ rangeT dimV ) = dimnullT dimV + dim rangeT dimV = dimV .
Thus, we obtain that nullT dimV ⊕ rangeT dimV = V . □

Example 32. Let T : C3 → C3 be given by T (x1, x2, x3) = (4x2, 0, 5x3). Notice that nullT = Span e1
and rangeT = Span {e1, e3}, so nullT ∩ rangeT ̸= {0} and nullT + rangeT ̸= C3. However, we have
nullT 3 = Span {e1, e2} and rangeT 3 = Span e3. Thus, we obtain nullT 3 ⊕ rangeT 3 = C3, as expected.

Definition 43. Let λ ∈ F. A non-zero vector v ∈ V is said to be a generalized eigenvector for λ if

(T − λIdv)
kv = 0, for some k ≥ 1.

Remark 29. Notice that by Lemma 59 v is a generalized eigenvector if and only if

(T − λIdv)
dimV v = 0.

The following is a generalization of Remark 22.

Remark 30. Let v be generalized eigenvector for λ and λ′, then λ = λ′. Indeed, let m be the smallest
integer such that (T − λ′ IdV )

mv = 0. Then we compute:

0 = (T − λ IdV )
dimV v

= ((T − λ′ IdV ) + (λ′ − λ) IdV )
dimV v

=

dimV∑
k=0

bk(T − λ′ IdV )
k(λ′ − λ)dimV−k IdV v

where b0 = 1 and the other bk are some binomial coefficients that we don’t need to specfiy. By applying
(T − λ′ IdV )

m−1 we obtain:
0 = (λ′ − λ)dimV (T − λ′ IdV )

m−1v.

Since (T − λ′ IdV )
m−1v ̸= 0, then we get (λ′ − λ)dimV which implies that λ′ = λ.

The next result shows that over the complex numbers for any operator T : V → V we can always
decompose V as a directed sum of spaces which are generalized eigenvectors for distinct eigenvalues. This
is in contrast to Theorem 5 and Lemma 38.

Proposition 12. Let T : V → V be an operator on a complex vector space. There is a basis of V consisting
of generalized eigenvectors.
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Proof. We proceed by induction on n = dimV . The case n = 1 is clear, since then T is simply given
by multiplication by a scalar, so any non-zero vector is an eigenvector, hence in particular a generalized
eigenvector.

Assume that n > 1 and that the result holds for every vector space of dimension k ≤ n− 1. Let λ be an
eigenvalue of T . Then by Lemma 60 applied to T − λ IdV we have:

null(T − λ IdV )
dimV ⊕ range(T − λ IdV )

dimV = V.

If null(T−λ IdV )dimV = V , then every non-zero vector in V is a generalized eigenvector, hence the conclusion
is clear. Assume that null(T − λ IdV )

dimV ̸= V , then we have:

0 < dim range(T − λ IdV )
dimV < dimV = n.

Thus, let S be the restriction of T to range(T − λ IdV )
dimV , which is invariant under T by Remark 24. By

the inductive hypothesis, there exists a basis of range(T −λ IdV )
dimV consisting of generalized eigenvectors

of S. It is clear that these are also generalized eigenvectors of T . Now we add to this basis a basis of
null(T − λ IdV )

dimV . This finishes the proof. □

The following is a continuation of Example 32.

Example 33. Let T : C3 → C3 be given by T (x1, x2, x3) = (4x2, 0, 5x3). We notice that λ1 = 0 and λ2 = 5
are eigenvalues of T . We can see that by considering the matrix representation of T in the standard basis
and calculating its characteristic polynomial.

We notice that (x1, 0, 0) with x1 ̸= 0 are eigenvectors for λ1 = 0 and that (0, 0, x3) with x3 ̸= 0 are
eigenvectors for λ2 = 5. These don’t form a basis for V .

However, if we calculate nullT 3 = {(x1, x2, 0) | x1, x2 ∈ C}, we notice that (x1, x2, 0) where not both x1
and x2 are zero given generalized eigenvectors for λ1. Whereas null(T − 5)3 = {(0, 0, x3) | x3 ∈ C}, thus
(0, 0, x3) with x3 ̸= 0 are generalized eigenvectors for λ2 = 5. And we obtain a decomposition of C3 as
claimed.

Here is a useful observation which generalizes Lemma 31.

Lemma 61. Any finite list of generalized eigenvectors for distinct eigenvalues is linearly independent.

Proof. Suppose by contradiction that there exists a list {v1, . . . , vm} of generalized eigenvectors for distinct
eigenvalues λ1, . . . , λm ∈ F which is linearly depend. Notice that we can assume that m is minimal. Let
a1, . . . , am ∈ F not all zero such that:

a1v1 + · · ·+ amvm = 0.

By applying (T − λm)dimV we obtain:

(16) a1(T − λm)dimV v1 + · · ·+ am−1(T − λm)dimV vm−1 = 0.

Thus, Remark 30 imply that for every i ∈ {1, . . . ,m− 1} we have:

(T − λm)dimV vi ̸= 0.

Since (T−λk)dimV (T−λm)dimV vi = (T−λm)dimV (T−λk)dimV vk = 0. We have that each (T−λm)dimV vi is
a generalized eigenvector of λi for i ∈ {1, . . . ,m−1}. Thus, the list {(T−λm)dimV v1, . . . , (T−λm)dimV vm−1}
is list of generalized eigenvectors for distinct eigenvalues which by (16) is linearly depend. This contradicts
the minimality of m. This finishes the proof. □

Corollary 21. Let T : V → V be an operator on a real vector space. Then the following are equivalent:

(1) there is a basis of V consisting of generalized eigenvectors;

(2) the minimal polynomial of T is of the form pT (x) =
∏m
i=1(x− λi).

Proof. Exercise! □

We end this section with a brief discussion of nilpotent operators, which collects some properties that
will be useful in the next section.
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Definition 44. An operator T : V → V is said to be nilpotent if T k = 0 for some k ≥ 1.

Remark 31. Notice that if T : V → V is nilpotent, then T dimV = 0. Indeed, since nullT k = V for some
k ≥ 1 and V = nullT k+i for every i ≥ 1 if nullT dimV ̸= V then we would have a sequence of proper
subspaces 0 ⊂ nullT ⊂ · · · ⊂ nullT dimV ⊂ nullT dimV+1 ⊆ V of length dimV + 1, which is a contradiction.

Exercise 40. Let T : V → V be a nilpotent operator and let m ≥ 1 be the smallest integer such that
Tm = 0. Prove that there exists v ∈ V such that {v, Tv, . . . , Tm−1v} is a linearly independent set.

Lemma 62. Let T : V → V be a nilpotent operator. Then

(i) the only eigenvalues of T are 0;

(ii) if F = C and 0 is the only eigenvalue of T , then T is nilpotent.

Proof. For (i) let v ̸= 0 in V such that Tv = λv. Then we have 0 = T dimV v = λdimV v, which implies that
λdimV = 0, so λ = 0.

For (ii) by (i) and Corollary 12 the minimal polynomial of T has the form pT (x) =
∏m
i=0 x, that is

pT (T ) = Tm = 0 for some m ≥ 0. □

Exercise 41. Give an example of T : V → V on a real vector space, such that 0 is the only eigenvalue of
T but T is not nilpotent.

Lemma 63. Let T ∈ L(V ). Then the following are equivalent:

(1) T is nilpotent;

(2) the minimal polynomial of T is zm for some m ≥ 1;

(3) there exists a basis BV of V such that M(T,BV ) has zeros on the diagonal and all entries below it,
i.e. it is strictly upper-triangular.

Proof. Exercise. □

Exercise 42. Let T : V → V be nilpotent, then T dimV = 0.

15.2. Generalized Eigenspace Decomposition. We start with a defintion:

Definition 45. Let T ∈ L(V ) and λ ∈ F. The generalized eigenspace of T corresponding to λ is:

G(λ, T ) := {v ∈ V | (T − λ)kv = 0 for some k ∈ Z≥1}.

Notice that by Remark 29 one has G(λ, T ) = null(T − λ)dimV .

Example 34. Let T : C3 → C3 be given by T (x1, x2, x3) = (4x2, 0, 5x3). Then

G(0, T ) = Span{e1, e2} and G(5, T ) = Span e3,

which gives V = G(0, T )⊕G(5, T ).

The following is a generalization of Proposition 7.

Theorem 7 (Generalized Eigenspace Decomposition). Assume that F = C. Let T ∈ L(V ) be an operator
and λ1, . . . , λm its distinct eigenvalues. Then

(i) G(λi, T ) is invariant under T for every i ∈ {1, . . . ,m};

(ii) T − λi IdV |G(λi,T ) is nilpotent for every i ∈ {1, . . . ,m};

(iii) V = G(λ1, T )⊕ · · · ⊕G(λm, T ).

Proof. For (i), since G(λi, T ) = null(T − λi IdV )
dimV the result follows by applying Remark 24 to q(T ) :=

(T − λi IdV )
dimV .

For (ii), we notice that for any v ∈ G(λi, T ) we have (T−λi IdV )dimV v = 0, thus (T − λi IdV |G(λi,T ))
dimV =

0.
For (iii), assume that we have

v1 + · · ·+ vm = 0,

for vi ∈ G(λi, T ). Since each vi has a different eigenvalue Lemma 61 implies that {v1, . . . , vm} is linearly
independent, which gives that each vi is zero; that is G(λ1, T ) + · · · + G(λm, T ) is a direct sum. Finally,
Proposition 12 implies that each v ∈ V can be written as a finite linear combination of generalized eigen-
vectors, i.e. V ⊆ G(λ1, T ) + · · ·+G(λm, T ). □
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We know introduce the following:

Definition 46. Let T ∈ L(V ) and λ be an eigenvalue of T .

• The algebraic multiplicity of λ is

µT (λi) := dimG(λi, T ).

• The geometric multiplicity of λ is15

γT (λi) := dimE(λi, T ).

Notice that γT (λi) ≤ µT (λi) for every λi.

Remark 32. Assume that F = C. It follows directly from Theorem 7 that

m∑
i=1

µT (λi) = dimV,

i.e. the sum of the multiplicity of all eigenvalues of T equals the dimension of V .

Definition 47. Given T ∈ L(V ) the characteristic polynomial of T is defined to be:16

cT (x) :=

m∏
i=1

(x− λi)
µT (λi),

where λ1, . . . , λm are all the distict eigenvalues of T .

Remark 33. When F = C, the following are a direct consequence of Definition 47:

(i) deg cT = dimV ;

(ii) the zeros of cT are precisely the eigenvalues of T .

Remark 34. Normally (for instance in Math 2101), the characteristic polynomial and algebraic multiplicity
are defined using the determinant of T − x IdV . We will see in a couple of sections that Definition 46 and
Definition 47 agree with this previous definition that you are probably familiar with.

The following result is harder to prove if one adopts the definition of characteristic polynomial via the
determinant.

Theorem 8 (Cayley–Hamilton theorem). Assume that F = C and let T ∈ L(V ). The characteristic
polynomial cT is a multiple of the minimal polynomial pT .

Proof. By Lemma 33 it is enough to prove that cT (T ) = 0. Notice that since each G(λi, T ) is invariant
under T , then given q(T ) any polynomial on T we have q(T ) = ⊕mi=1 q(T )|G(λi,T ), where ⊕mi=1 q(T )|G(λi,T )

is the unique map from ⊕mi=1G(λi, T ) determined by the composites G(λi, T )
q(T )|G(λi,T )→ G(λi, T ) ⊆ V via

Proposition 2.
Thus, by Theorem 7 we have:

cT (T ) =

m∏
i=1

(T − λi)
µT (λi) = ⊕mi=1 cT (T )|G(λi,T ) ,

but for each λk we have

cT (T )|G(λk,T ) =

m∏
i=1, i ̸=k

(T − λi)
µT (λi)

∣∣∣
G(λk,T )

(T − λk)
µT (λk)

∣∣∣
G(λk,T )

= 0,

where the last equality follows from G(λk, T ) = null(T |G(λk,T ) − λk)
dimG(λk,T ). □

15I am not sure if there is a standard notation for the geometric multiplicity.
16I am also not sure what is the standard notation for characteristic polynomial. Some references use pT , but we will reserve

that for the minimal polynomial.
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The last result gives us a way to compute µT (λi) from an upper-triangular matrix representing T .

Proposition 13. Assume that F = C and let T ∈ L(V ). Assume that BV ⊂ V is a basis such that
M(T,BV ) is upper-triangular. Then µT (λi) equals the number of times that λi shows up in the diagonal of
M(T,BV ).

Proof. Let BV = {v1, . . . , vn} and λ1, . . . , λn be the diagonal entries of M(T,BV ). Let S ⊂ {1, . . . , n}
be the subset such that for k ∈ S we have λk ̸= 0. Thus, T |SpanS is injective and {Tvi}i∈S is linearly
independent. In particular, we obtain:

dim rangeT ≥ n− d,

where n = dimV and d := |{1, . . . , n}\S|, i.e. d is the amount of 0’s in the diagonal of M(T,BV ). The
fundamental theorem of linear algebra gives that

(17) dimnullT ≤ d.

Since M(Tn, BV ) = M(T,BV )
n, it is clear that the diagonal entries of M(Tn, BV ) are λ

n
1 , . . . , λ

n
n. And we

have 0’s in the same positions in the diagonal of M(Tn, BV ) as in the diagonal of M(T,BV ). Thus (17)
applied to Tn gives:

(18) dimnullTn ≤ d.

Let dλ denote the number of times that λ appears in the diagonal of M(T,BV ) and let µT (λ) be the
algebraic multiplicity of λ. Then by apply (18) to (T − λ) we obtain:

(19) µT (λ) = dimnull(T − λ)n ≤ dλ.

However, now we notice that
∑m
i=1 µT (λi) = dimV by Remark 32 and clearly

∑m
i=1 dλi = dimV , where

λ1, . . . , λm are a list of distinct eigenvalues of T . Thus (19) is an equality for every eigenvalue λ. This
finishes the proof. □

We end this section interpreting the decomposition of Theorem 7 in terms of matrices.

Definition 48. A block diagonal matrix is a square matrix of the form:A1 0
. . . 0

Am


where each Ai is a square matrix along the diagonal and all other entries are 0.

Lemma 64. Assume that F = C and let T ∈ L(V ). Let λ1, . . . , λm be distinct eigenvalues of T with
(algebraic) multiplicities d1, . . . , dm. Then there exists a basis BV of V such that

(20) M(T,BV ) =

A1 0
. . .

0 Am


where each Ai is an i-by-i upper-triangular matrix of the form:

Ai =

λi ∗
. . .

λi

 .

Proof. Exercise. □
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16. Mar. 28, 2024

16.1. Jordan normal form. The goal of this section is to improve on the results of §15.2.
From the point of view of Theorem 7 we can ask: “Given an eigenvector vk ∈ E(λ, T ) how can we extend

this to a set that is a basis of G(λ, T )?”
From the point of view of Lemma 64 we can ask: “Can we do even better and make each block matrix

Ai into a simpler form?”.
Let’s first consider a couple of examples for motivation. For this discussion the specific value of an

eigenvalue λ is not relevant, so we will assume that the operator is nilpotent, hence its eigenvalue is 0.

Example 35. Let T : C4 → C4 be given by T (z1, z2, z3, z4) = (0, z1, z2, z3). Notice that T 4 = 0. Moreover,
for v1 = e1, we have T 3v1, T

2v1, T v1, v1 is a basis of C4. Notice this case is particularly nice, since we have
v1 ∈ E(0, T ) and then {T 3v1, T

2v1, T v1, v1} becomes a basis of G(0, T ) = V .

Example 36. Let T : C6 → C6 be given by T (z1, z2, z3, z4, z5, z6) = (0, z1, z2, 0, z4, 0). Notice that T 3 = 0.
However, there is not a vector v ∈ C6 such that {v, Tv, T 2v, T 3v, T 4v, T 5v} is a basis of C6. However if we
consider v1 = e1, v2 = e4 and v3 = e6, then we have that BV = {T 2v1, T v1, v1, T v2, v2, v3} form a basis of
C6. In fact, we have

(21) M(T,BV ) =



0 1 0
0 0 1
0 0 0

 0 0
0 0
0 0

0
0
0

0 0 0
0 0 0

(
0 1
0 0

)
0
0

0 0 0 0 0
(
0
)

 .

In other words, we can think of M(T,BV ) as three block matrices A1, A2 and A3, where A1 is a 3 by 3
matrix, A2 is a 2 by 2 matrix and A3 is a 1 by 1 matrix. Moreover, notice that each of these block diagonal
matrices only has non-zero entries on the first row above the diagonal.

It turns out that the behaviour of Example 36 is not special in two regards.
Firstly, for any nilpotent operator we can find a basis of V such that the matrix representing T in this

basis has a form similar to that of (21).
Secondly, even for arbitrary operators (on a complex vector space) we are able to find a basis such that

we have a block diagonal matrix as in (20), where each Ai only has non-zero entries at the diagonal and on
the first row above the diagonal.

To prove the next results we introduce the following:

Definition 49. Given an operator T : V → V on a finite-dimensional space. A Jordan basis for T is a basis
BV such that

M(T,BV ) =

A1 0
. . .

0 Am


where each Ai is an i-by-i upper-triangular matrix of the form:

Ai =


λi 1 0

. . .
. . .

. . . 1
0 λi

 .

Warning 8. The eigenvalues λi of Ai are not necessarily distinct. See Example 36.

Proposition 14. Let T : V → V be a nilpotent operator. Then T has a Jordan basis BV .

Proof. We proceed by induction on dimV . The case dimV = 1 is clear, since any non-zero vector v ∈ V
would be a Jordan basis.

Let n = dimV and assume that the result holds for every vector space U and nilpotent operator
on U such that dimU ≤ n − 1. Let m be the smallest positive integer such that Tm = 0. Consider
v ∈ V such that Tm−1v ̸= 0, then by Exercise 40 {v, Tv, . . . , Tm−1v} is linearly independent. Let U :=
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Span {v, Tv, . . . , Tm−1v}, if U = V , then it is clear that BV = {Tm−1v, . . . , T v, v} gives a Jordan basis of
T .

So we assume that U ̸= V . Notice that U is invariant under T . Thus, the inductive hypothesis gives
that T |U has a Jordan basis.

Let φ ∈ V ∨ := L(V,F), the dual space of V , be such that φ(Tm−1v) ̸= 0. Define:

W := {v ∈ V | φ(T iv) = 0, for 0 ≤ i ≤ m− 1}.

Since φ(T iv) = 0 ⇒ φ(T iTv) = 0 for i ∈ {0, . . . ,m− 1} we see that W is invariant under T . We claim that
V = U ⊕W .

First, we show that U ∩W = {0}. Assume by contradiction that there is a non-zero u ∈ U ∩W , then
we have

(22) u = a1v + a2Tv + · · ·+ amT
m−1v,

for some constants ai ∈ F. Let j ≥ 1 be the smallest integer such that aj ̸= 0, by applying Tm−j to both
sides of (22) we obtain:

Tm−ju = ajT
m−1v.

By applying φ we obtain
φ(Tm−ju) = ajφ(T

m−1v) ̸= 0,

which gives that u /∈W . Thus, U ∩W = {0}.
Now consider S : V → Fm given by S(v) := (φ(v), φ(Tv), . . . , φ(Tm−1v)). Clearly, we have W = nullS.

By the fundamental theorem of linear algebra we obtain:

dimW = dimnullS = dimV − dim rangeS ≥ dimV −m.

Thus, we calculate:
dim(U ⊕W ) = dimU + dimW ≥ m+ dimV −m = dimV,

which implies that U ⊕W = V .
Since T |W : W → W is nilpotent and dimW < dimV , by the inductive hypothesis we have BW a

Jordan basis of W for T |W . It is clear that B = BV ∪ BW is a Jordan basis of V for T . This finishes the
proof. □

Finally, we have the following.

Theorem 9 (Jordan normal form). Assume that F = C and let T : V → V be an arbitrary operator. Then
there exists a Jordan basis of V for T

Proof. Let λ1, . . . , λm be the distinct eigenvalues of T . By Theorem 7 we have V = ⊕mi=1G(λi, T ) and each
(T − λi IdV )|G(λi,T ) is nilpotent. By Proposition 14 each (T − λi IdV )|G(λi,T ) has a Jordan basis Bi for

i ∈ {1, . . . ,m}. Then it is clear that B = B1 ∪ · · · ∪Bm is a Jordan basis of T . □

Remark 35. Theorem 9 is sometimes also refered to as Jordan canonical form.

Remark 36. Let T : V → V be an operator on a complex vector space with minimal polynomial pT (x) =∏m
i=1(x−λi)di , where {λ1, . . . , λm} are distinct eigenvalues and di ≥ 1 for i ∈ {1, . . . ,m}. As a consequence

of Exercise 11 in Worksheet 8 and Exercise 42 we know that the largest Jordan block for the eigenvalue λi
is di.

Example 37. Let T : C6 → C6 be an operator whose minimal polynomial is pT = (x− 2)2(x− 3)(x− 4).
Then up to reordering of the blocks the possible Jordan forms of T are:

2 1 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 4




2 1 0 0 0 0
0 2 0 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 4




2 1 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 4




2 1 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 4

 .

Exercise 43. Make sure you understand Example 37. Calculate the characteristic polynomial for each
possibility.
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17. Apr. 8, 2024

17.1. Tensor Products. There are many different ways to motivate the construction of tensor product.
Here is one that I find particularly useful. Let V be a finite-dimensional vector space. Recall that V ∨ :=
L(V,F) is the dual vector space. Consider the function:

evV : V ∨ × V → F
(φ, v) 7→ φ(v).

We notice that this assignment satisfies the following:

evV ((aφ1+φ2, v)) = a evV ((φ1, v))+ evV ((φ2, v)) and evV ((φ, bv1+ v2)) = evV ((φ, v1))+ b evV ((φ, v2)).

However, it is not linear. Namely, V ∨ × V is a vector space, where given (φ, v) ∈ V ∨ × V we have
a(φ, v) = (aφ, av)17, however:

φ(av) = aφ(v) = a evV ((φ, v)) ̸= evV ((aφ, av)) = (aφ)(av) = a2φ(v).

Here is a definition that abstracts what the function evV actually satisfies:

Definition 50. Given vector spaces U, V and W , a function B : V ×W → U is a bilinear map if

• B(av1 + v2, w) = aB(v1, w) +B(v2, w) for every a ∈ F, v1, v2 ∈ V and w ∈W ; and

• B(v, aw1 + w2) = aB(v, w1) +B(v, w2) for every a ∈ F, w1, w2 ∈ V and v ∈W .

We let B(V ×W,U) denote the set of bilinear maps from V ×W to U .

Remark 37. In fact, the set B(V ×W,U) is a vector space, with multiplication and addition point-wise,
i.e. given B1, B2 and a ∈ F we let (aB1 +B2)(v, w) := aB1(v, w) +B2(v, w) for every v ∈ V and w ∈W .

Example 38. (i) The function evV : V × × V → F from the beginning of this section is a bilinear map;

(ii) Let φ ∈ V ∨ and ψ ∈W∨, then B(v, w) := φ(v)ψ(w) is a bilinear map;

(iii) Let B ∈ B(V ×W,F), for any T ∈ L(V ) we have B′(v, w) := B(Tv,w) is another bilinear map.

(iv) The function (−) ◦ (−) : L(V )× L(V ) → L(V ) is a bilinear map.

(v) The function ev(−,−) : V × L(V,W ) →W given by

ev(v, T ) := T (v)

is a bilinear map.

The following exercise is crucially important:

Exercise 44. Let B : V ×W → F be a bilinear map. Suppose that B is also linear. Then B(v, w) = 0, for
every v ∈ V and w ∈W .

The question that the tensor product tries to answer is the following:

Question 2. Can we formulate the data of a bilinear map B : V ×W → F in terms of a linear map?

Notice that Exercise 44 tells us that V ×W is not the correct vector space to consider.

18. Apr. 15, 2024

18.1. Tensor Products (continued).

Definition-Construction 1. Given two vector spaces V andW , the tensor product of V andW is a vector
space T equipped with a bilinear map: c : V ×W → T such that for every bilinear map B : V ×W → U to

17Recall how we defined the structure of a vector space on a product of vector spaces.
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an arbitrary vector space U , there exists an unique linear map L : T → U such that the following diagram
commutes:

(23)

V ×W

T U

c B

L

.

The idea to construct T is to build a very large vector space out of V ×W and then to take its quotient
by the relations that we expect to hold for a linear map out of it to always exist.

Let T ′ := ⊕(v,w)∈V×WF(v,w), where each F(v,w) is the 1-dimensional vector F. Let δ(v,w) ∈ T ′ denote
the vector that is 1 in F(v,w) and 0 in every other copy F(v′,w′), where (v′, w′) ̸= (v, w). Consider the set of

vectors:18

(24)
S := {δv+v′,w−δv,w−δv′,w, δv,w+w′ −δv,w−δv,w′ , δav,w−aδv,w, δv,aw−aδv,w, δav,w−δv,aw}a∈F v,v′∈V w,w′∈W .

Let R := SpanS ⊆ T ′ be the subspace spanned by all the vectors in (24). We claim that T := T ′/R satisfy
the conditions to be a tensor product.

For any v ∈ V and w ∈ W we let v ⊗ w := δv,w + R ∈ T , i.e. the image of δv,w ∈ T ′ via the quotient
map π : T ′ → T .

Firstly, we notice that by construction we have the relations:

(25) (v + v′)⊗ w = v ⊗ w + v′ ⊗ w, v ⊗ (w + w′) = v ⊗ w + v ⊗ w′, (av)⊗ w = a(v ⊗ w) = (v ⊗ aw).

Secondly, we claim that the function c : V ×W → T given by c(v, w) := v ⊗w is bilinear. We leave this
for the reader to check!

Finaly, we prove the universal property. Let L′ : T ′ → U be the linear map defined by L′(δv,w) :=
B(v, w), since {δv,w}(u,v)∈U×V is a basis of T ′ this is well-defined. We notice that L′ vanishes on each
element of (24). For instance, we have:

L′(δv+v′,w − δv,w − δv′,w) = B(v + v′, w)−B(v, w)−B(v′, w) = 0.

One also needs to check the other relations, we leave that as an exercise.
Thus, R ⊆ nullL′ and Lemma 20 implies that we have map L such that the following diagram commutes:

T ′ T

U
L′

π

L .

Now we notice that L ◦ c(v, w) = L(v ⊗ w) = B(v, w), that is c : V ×W → T together with L : T → U
make the diagram (23) commute.

We only need to argue that L : T → U is the unique linear map that makes the diagram (23) commute.
Assume there exists M : T → U another linear map making the diagram (23) (with M in place of L)
commute, by considering the image of (v, w) we would have M(v ⊗ w) = B(v, w) = L(v ⊗ w). Notice that
{δ(v,w)}(v,w)∈V×W is a basis of T ′, by Exercise 29. Since π : T ′ → T is surjective, it is clear that the set of
v ⊗ w = π(δv,w), for (v, w) ∈ V ×W spans T . Thus, if M(v ⊗ w) = L(v ⊗ w) for every v ⊗ w then M = L.

We leave it to the reader19 to prove that T is unique up to isomorphism, i.e. any other vector space with
the same property will be isomorphic to T . The idea is the same as in the proof that any direct sum or
product of two vector spaces is isomorphic.

Notation 8. Given two vector spaces V and W we will simply denote by V ⊗W their tensor product.
Normally, the bilinear map from V ×W to V ⊗W is also denoted by ⊗. We will avoid this and denote it
by:

ηV,W : V ×W → V ⊗W.

18Strictly speaking, since we are working over a field of characteristic 0, these vector are not all linearly independent, so we
could have considered a smaller set. But for the more general case we need all these relations.

19You can find a proof in the page 6 of the following notes. The set up of these notes is more general than our course, since
they treat R-modules for a commutative ring R. However, they are a very good read for this material.

https://kconrad.math.uconn.edu/blurbs/linmultialg/tensorprod.pdf


LINEAR ALGEBRA II SPRING 2024 - HKU 57

The description of Definition-Construction 1 is very abstract and not necessarily useful in practice. The
thing that is useful is the universal property, as examplified in the proof of the following result.

Lemma 65. Let V and W be vector spaces and {vi}i∈I and {wj}j∈J bases of V and W , respectively.
Then {vi ⊗wj}(i,j)∈I×J is basis of V ⊗W . In particular, if V and W are finite-dimensional, then we have
dimV ⊗W = dimV · dimW .

Proof. Since {v ⊗ w}(v,w)∈V×W is a spanning set of V ⊗W , it is easy to see that {vi ⊗ wj}(i,j)∈I×J is a
spanning set (Make sure you understand why!).

We will prove that the set {vi ⊗wj}(i,j)∈I×J is linearly independent. Assume that there are coefficients
ai,j ∈ F not all zero, such that

∑
i,j ai,jvi⊗wj = 0. Consider (i′, j′) ∈ I×J and define the following bilinear

function Bi′j′ : V ×W → F by
Bi′j′(v, w) = ci′dj′ ,

where v =
∑
i∈I civi and w =

∑
j∈J djwj are expansions of v and w in the given bases. By the universal

property, there exists an unique map fi′j′ such that the following diagram commutes:

V ×W V ⊗W

F
Bi′j′

ηV,W

fi′j′ .

In particular, we obtain that

fi′j′(vi ⊗ wj) = Bi′j′((vi, wj)) =

{
1 if (i, j) = (i′, j′)

0 else.

Since fi′j′ is linear we obtain

fi′j′(
∑
i,j

ai,jvi ⊗ wj) = ai,jfi′j′(
∑
i,j

vi ⊗ wj) = ai′,j′ = 0.

Since (i′, j′) ∈ I×J was arbitrary, we obtain that ai,j = 0 for every (i, j) ∈ I×J . This finishes the proof. □

Example 39. (i) Let V = C3, then V ⊗ V ≃ C9, with basis given by ei ⊗ ej , where i, j ∈ {1, 2, 3} and
{e1, e2, e3} is the standard basis of C3.

(ii) Let V be a finite-dimensional vector space, then V ∨ ⊗ V ≃ L(V ). Indeed, let {e1, . . . , en} be a basis
of V , Lemma 21 gives {λ1, . . . , λn} a basis of the dual vector space V ∨. Consider the linear map
ΦV : V ∨ ⊗ V → L(V ) defined on the basis {λi ⊗ ej}i,j∈I by

ΦV (λi ⊗ ej)(v) = λi(v)ej .

We claim that ΦV is a isomorphism. Since the dimensions are the same it is enough to check that
ΦV is surjective. Let T : V → V be an operator, and let T (ek) =

∑n
j=1 akjej for some coefficients

(akj)1≤k,j≤n. We claim that T = ΦV (
∑n
i,j=1 aijλi ⊗ ej). Indeed, we compute:

ΦV (

n∑
i,j=1

aijλi ⊗ ej)(ek) =

n∑
i,j=1

aijΦV (λi ⊗ ej)(ek)

=

n∑
i,j=1

aijλi(ek)ej

=

n∑
i,j=1

aijδi,kej

=

n∑
j=1

akjej .

Thus, T (ek) = ΦV (
∑n
i,j=1 aijλi⊗ej)(ek) for every k ∈ {1, . . . , n}, which gives that T = ΦV (

∑n
i,j=1 aijλi⊗

ej) as desired.



58 ARON HELEODORO

(iii) Let f : V1 → V2 and g :W1 →W2 be linear maps between vector spaces. Then there exists an unique
linear map f ⊗ g : V1 ⊗W1 → V2 ⊗W2. Indeed, consider the function:

Bf,g : V1 ×W1 → V2 ⊗W2, Bf,g((v1, w1)) := f(v1)⊗ g(w1).

We leave it to the reader to check that Bf,g is bilinear, hence by the universal property there exist
f ⊗ g as claimed. Moreover, for each v1 ∈ V1 and w1 ∈W1, we have (f ⊗ g)(v1 ⊗w1) = f(v1)⊗ g(w1).

We go back to the motivating question in this section. We notice that evV : V ∨ × V → F determines a
linear map20:

evV : V ∨ ⊗ V → F.

Exercise 45. Let V be a vector space over F consider B : F× V → V given by B(a, v) := av.

(i) Check that B is bilinear and prove that the map lV : F⊗ V → V is an isomorphism.

(ii) Similarly prove that there exists an isomorphism rV : V ⊗ F ≃→ V .

(iii) For every vector space W over F. Consider the morphism σ′
V,W defined as the composite:

V ×W W × V W ⊗ V.
SV,W ηw,V

Prove that σ′
V,W is bilinear and that the induced linear map σV,W : V⊗W ∼−→W⊗V is an isomorphism.

(iv) What is the compatibility between lV , rV and σV,F?

Notation 9. Given V a vector and L : F → W a linear map between F and a vector space W . In view of
Exercise 45 and Exercise 8 from Worksheet 9, we will simply write IdV ⊗a : V → V ⊗W for the composite:

V V ⊗ F V ⊗W,
r−1
V

≃
IdV ⊗a

and similarly a⊗ IdV : V →W ⊗ V for the composite:

V F⊗ V W ⊗ V.
l−1
V

≃
a⊗IdV

Given b :W → F a linear map, we will also simply write b⊗ IdV for the composite W ⊗V
b⊗IdV→ F⊗V

≃→ V
and so on.

19. Apr. 18, 2024

19.1. Further properties of tensor products. Let U, V and W be three vector spaces. Given T : V →
L(V,W ), we let φ(T ) : V ⊗W → U be the linear map induced by the bilinear map:

φ′(T ) : V ×W → U φ′(T )(v, w) := T (v)(w).

Indeed, notice that φ′(T )(av1 + v2, w) = T (av1 + v2)(w) = (aT (v1) + T (v2))(w) = aT (v1)(w) + T (v2)(w) =
aφ′(T )(v1, w) + φ′(T )(v2, w), and similarly φ′(T )(v, aw1 + w2) = aφ′(T )(v, w1) + φ′(T )(v, w2). So φ

′(T ) is
bilinear and induces φ(T ) : V ⊗W → U which satisfies φ(T )(v ⊗ w) = T (v)(w) for every v ⊗ w ∈ V ⊗W .

Lemma 66. Let U, V and W be three vector spaces, the linear map constructed above:

φ : L(V,L(W,U))
≃→ L(V ⊗W,U),

(V
T→ L(V,W )) 7→ φ(T ),

is an isomorphism.

20We will still use the same notation for evV .
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Proof. First we check that φ is injective. Let T, T ′ ∈ L(V,L(W,U)) such that φ(T ) = φ(T ′). That is for
every v ⊗ w ∈ V ⊗W we have:

T (v)(w) = φ(T )(v ⊗ w) = φ(T ′)(v ⊗ w) = T ′(v)(w).

Thus, T (v) = T (v′) for every v ∈ V , which implies that T = T ′.
Now consider a linear map S : V ⊗W → U . We let Φ(S) : V → L(W,U) be defined by:

Φ(S)(v)(w) := S(v ⊗ w).

We notice that Φ(S)(v)(aw1+w2) = aΦ(S)(v)(w1)+Φ(S)(v)(w2) and Φ(S)(av1+v2)(w) = aΦ(S)(v1)(w)+
Φ(S)(v2)(w) so Φ(S) is well-defined. Finally, we leave it to the reader to check that

φ(Φ(S)) = S,

which gives that φ is surjective. This finishes the proof. □

Remark 38. This is an abstract remark and you can skip it for now. The statement of Lemma 66 is
sometimes referred to as the Hom-⊗-adjunction. It holds in my more general contexts and it is also functorial,
e.g. given a linear map T : V1 → V2 we obtain linear maps (−) ◦ T : L(V2,L(W,U)) → L(V1,L(W,U)) and
(−) ◦ T ⊗ IdW : L(V2 ⊗W,U) → L(V1 ⊗W,U) such that the following diagram commutes:

L(V2,L(W,U)) L(V2 ⊗W,U)

L(V1,L(W,U)) L(V1 ⊗W,U)

φV2,W,U

(−)◦T (−)◦T⊗IdW

φV1,W,U

The following is a result about the interaction between tensor products and dual spaces.

Lemma 67. Let U and V be finite-dimensional vector spaces. Then one has an isomorphism

U∨ ⊗ V ∨ ≃→ (U ⊗ V )∨.

Proof. Let {u1, . . . , um} ⊂ U and {v1, . . . , vn} ⊂ V be basis of U and V , respectively. We define: B :
U∨ × V ∨ → (U ⊗ V )∨ as a linear map by:

B(λ, µ)(ui ⊗ vj) :=

n∑
i=1

λ(ui)µ(vj),

since {ui⊗vj}(i,j)∈[n]×[m]
21 is a basis of U⊗V . It is easy to see that B is a bilinear map, hence by the universal

property of U∨ ⊗ V ∨ (Definition-Construction 1) we obtain the linear map: L : U∨ ⊗ V ∨ → (U ⊗ V )∨. □

Corollary 22. Let V and U be finite-dimensional vector spaces, then we have

L(U, V )
∼−→ U∨ ⊗ V.

Proof. For (i), consider the chain of isomorphisms:

U∨ ⊗ V (U ⊗ V ∨)∨ L(U ⊗ V ∨,F) L(U, (V ∨)∨) L(U, V ),≃ =

φ−1

U,(V ∨)∨,F

≃ ≃

where the first isomorphism is from Lemma 67, the second from Lemma 66, and the third from Exercise
32. □

21Here we use [n] = {1, . . . , n} and [m] = {1, . . . ,m}.
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19.2. Trace of an operator. The goal of this section is to define the trace of an operator on a finite-
dimensional vector space V without refereeing to a basis of V . Given V a finite-dimensional vector space
and let BV = {v1, . . . , vn} be a basis of V . We define the linear map:

cBV

V : F → V ∨ ⊗ V

a 7→ a

n∑
i=1

v∨i ⊗ vi,

where {v∨1 , . . . , v∨n} denotes the dual basis associated to BV .

Let B′
V = {u1, . . . , un} be another basis of V . We claim that c

B′
V

V = cBV

V . Indeed, by using Example 39

(ii) we notice that ΦV ◦ coevBV

V (a) : V → V is simply

ΦV ◦ cBV

V (a)(v) = av,

for any basis BV . Since ΦV is an isomorphism, we obtain that cBV

V is independent of the basis. Henceforth
we drop BV from the notation and simply write cV : F → V ∨ ⊗ V .

The following result on the interaction between the coevaluation and evaluation maps is very useful:

Lemma 68. Let T : V → W be a linear map between finite-dimensional vector spaces, then the following
diagram commutes:

V V

V ⊗ V ∨ ⊗ V

V ⊗ V ∨ ⊗W

W W

T

idV

idV ⊗cV

idV ⊗V ∨ ⊗T

ev′
V

idW

where ev′V : V ⊗ V ∨ → F is given by ev′V (v ⊗ φ) = φ(V ).

Proof. Left as an exercise. □

Definition 51. Let T ∈ L(V ) be an operator on a finite-dimensional vector space. We let tr(T ) be the
composite of the following linear maps:

F cV→ V ∨ ⊗ V
IdV ∨ ⊗T→ V ∨ ⊗ V

evV→ F,

i.e. any linear map from F → F is given by multiplication by a scalar, tr(T ) is that scalar.

Lemma 69. Let BV be a basis of a finite-dimensional vector space V and T : V → V an operator. Then

tr(T ) =

n∑
i=1

M(T,BV )i,i.



LINEAR ALGEBRA II SPRING 2024 - HKU 61

Proof. Let BV = {v1, . . . , vn} and {v∨1 , . . . , v∨n} be the dual basis, we compute:

tr(V )(a) = evV ◦(IdV ∨ ⊗T )(a
n∑
i=1

v∨i ⊗ vi)

= evT (a

n∑
i=1

v∨i ⊗ T (vi))

= evT (a

n∑
i=1

n∑
j=1

v∨i ⊗M(T,BV )j,ivj)

=

n∑
i,j=1

M(T,BV )j,i evT (v
∨
i ⊗ vj)

=

n∑
i,j=1

M(T,BV )j,iδi,j

=

n∑
i=1

M(T,BV )i,i.

□

The following is an interesting way to think about the trace.

Lemma 70. Suppose that for every finite-dimensional vector space V , we have a linear function τV :
L(V ) → F, which satisfies the following conditions:

a) for every V and W and pair of linear maps T : V →W and S :W → V we have:

τV (S ◦ T ) = τW (T ◦ S);

b) τV (IdV ) = dimV for every V .

Then

(i) for every decomposition U1 ⊕ U2 = V we have trV (T ) = trV (PU1TPU1) + trV (PU2TPU2), where Pi :
V → V is the projection onto Ui, for i = 1, 2;

(ii) if such a data {τV }V exist, it is unique.

Proof. We first prove (i). First we notice that trV (PUi
T ◦PUi

) = trV (T ◦P 2
Ui
) by a), and that trV (T ◦P 2

Ui
) =

trV (T ◦ PUi
), since any projection satisfy P 2

U1
= PUi

, for i = 1, 2. Moreover, one has P2 = IdV −P1. Since
τV is linear, we obtain:

τV (T ◦ IdV ) = τV (T ◦ PU1) + τV (T ◦ PV2) = trV (PU1TPU1) + trV (PU2TPU2).

We now prove (ii). Suppose that there are two τV , τ
′
V for all vector spaces V satisfying both a) and b).

We argue by induction on n = dimV that τV = τ ′V . For n = 1, since any linear operator T ∈ L(V ) is
T = a IdV for some a ∈ F then we have:

τV (T ) = aτV (IdV ) = adimV = aτ ′V (IdV ) = τ ′V (T ).

Now we assume that τW = τ ′W for all vector spaces W , such that dimW < n. Let V be a subspace of

dimension n and U1 ⊕ U2 = V and decomposition into non-zero subspaces U1 and U2. Let V
PUi→ U

ıi→ V
denote the factorization of PUi

via Ui, for i = 1, 2. We notice that T ◦ PU = (T ◦ ıi) ◦ PUi
agree. Thus, we

obtain:

τV (T ) = τV (TPU1) + τV (TPU2)

= τU1(PU1 ◦ (T ◦ ı1)) + τU2(PU2 ◦ (T ◦ ı2))
= τ ′U1

(PU1 ◦ (T ◦ ı1)) + τ ′U2
(PU2 ◦ (T ◦ ı2))

= τ ′V (TPU1
) + τ ′V (TPU2

)

= τ ′V (T ).

□
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We end this section checking that the trace we constructed in Definition 51 is cyclic, namely it satisfies
condition a) from Lemma 70.

Theorem 10 (Cyclicity). Let T : V → W and S : W → V be two linear maps between finite-dimensional
vector spaces, then tr(S ◦ T ) = tr(T ◦ S).

Proof. The proof is contained in the following two diagrams. For better readability we omit certain the
horizontal arrows, they should all be identity arrows and the fact that the respective diagrams commute is
tautological.

F F F F

V ∨ ⊗ V V ∨ ⊗ V V ∨ ⊗ V V ∨ ⊗ V

V ∨ ⊗W V ∨ ⊗W V ∨ ⊗ V ⊗W∨ ⊗W V ∨ ⊗ V ⊗W∨ ⊗W

V ∨ ⊗W ⊗W∨ ⊗W V ∨ ⊗W ⊗W∨ ⊗W V ∨ ⊗ V ⊗W∨ ⊗ V

V ∨ ⊗W ⊗W∨ ⊗ V V ∨ ⊗W ⊗W∨ ⊗ V V ∨ ⊗W ⊗W∨ ⊗ V

V ∨ ⊗ V V ∨ ⊗ V V ∨ ⊗ V V ∨ ⊗ V

F F F F

cV

id

cV

id

cV

id

cV

idV ∨ ⊗T idV ∨ ⊗T

id

idV ∨⊗V ⊗cW idV ∨⊗V ⊗cW

idV ∨ ⊗S

id

idV ∨ ⊗cW idV ∨ ⊗T⊗id⊗W⊗W∨

id

idV ∨⊗V ⊗W∨ ⊗S

idV ∨⊗W⊗W∨ ⊗S

id

idV ∨⊗W⊗W∨ ⊗S idV ∨ ⊗T⊗id⊗W⊗W∨

idV ∨ ⊗e′W⊗idV idV ∨ ⊗e′W⊗idV

id

idV ∨ ⊗e′W⊗idV

evV

id

evV evV evV

id id id

In the diagram bellow, on the third line, the horizontal map between the first and second column
σ : V ∨ ⊗ V ⊗W∨ ⊗W →W∨ ⊗W ⊗ V ∨ ⊗ V is given by σ(v∨, v, w∨, w) 7→ (w∨, w, v∨, v). To simplify the
notation we use σ for the similarly defined map between the first and second column on the fourth and fifth
lines.

F F F F

V ∨ ⊗ V W∨ ⊗W W∨ ⊗W W∨ ⊗W

V ∨ ⊗ V ⊗W∨ ⊗W W∨ ⊗W ⊗ V ∨ ⊗ V W∨ ⊗ V W∨ ⊗ V

V ∨ ⊗ V ⊗W∨ ⊗ V W∨ ⊗ V ⊗ V ∨ ⊗ V W∨ ⊗ V ⊗ V ∨ ⊗ V

V ∨ ⊗W ⊗W∨ ⊗ V W∨ ⊗ V ⊗ V ∨ ⊗W W∨ ⊗ V ⊗ V ∨ ⊗W

V ∨ ⊗ V W∨ ⊗W W∨ ⊗W W∨ ⊗W

F F F F

cV

id

cW

id

cW

id

cW

idV ∨⊗V ⊗cW idW∨⊗W ⊗cV

id

idW∨ ⊗S idW∨ ⊗S

idV ∨⊗V ⊗W∨ ⊗S

σ

idW∨ ⊗S⊗idV ∨⊗V idW∨⊗V ⊗cV

id

idW∨ ⊗TidV ∨ ⊗T⊗idW∨⊗V

σ

idW∨⊗V ⊗V ∨ ⊗T

id

idW∨⊗V ⊗V ∨ ⊗T

idV ∨ ⊗e′W⊗idV

σ

idW∨⊗ev′
V

⊗ idW
idW∨⊗ev′

V
⊗ idW

evV evW evW

id

evW

id id id

We claim that all the above diagrams commute. We leave it to the reader to justify each one of them.
Notice that the composition of the left most column in the first diagram is tr(S ◦ T ), whereas the

composition of the right most column in the second diagram is tr(T ◦ S). □

Exercise 46. Formulate which diagrams need to commute in the proof of Theorem 10 and prove that each
of them commute. In fact, there are only three different type of abstract commuting diagrams that are



LINEAR ALGEBRA II SPRING 2024 - HKU 63

needed to justify all the diagrams in the proof, one of them is in Lemma 68, so you only need to formulate
and prove the other two.

Remark 39. Here are some comments about the proof above. If one traces what happens to an element
a ∈ F via all of the above diagrams we will obtain equations proving tr(TS) = tr(ST ) in terms of matrix
coefficients. The above proof has the advantage of never using matrices, however it is a bit abstract and
hard to see what is happening. A nice perspective on this comes from thinking of the diagrams we wrote in
terms of pictures. The following two blog posts explains this very nicely.

19.3. Bilinear Forms. The following is a special case of Definition 50:

Definition 52. Let V be a vector space over F. A bilinear form on V is a bilinear map B : V × V → F in
the sense of Definition 50.

Example 40. (i) An inner product on a finite-dimensional real vector space ⟨−,−⟩ : V × V → F is a
bilinear form.

(ii) Let β : F3 × F3 → F be given by β((x1, x2, x3), (y1, y2, y3)) = x1y2 − 5x2y3 + 2x3y1.

(iii) Let β : Pn(R)× Pn(R) → R be given by β(p, q) = p(2)q′(3).

(iv) Let φ, λ ∈ V ∨ = L(V,F) be two linear functions on V . Then β(v, u) := φ(v)λ(u) is a bilinear form.

Exercise 47. (i) Check that all the examples in Example 40 are not linear.

(ii) Let β : V × V → F be a bilinear form and linear functional on V . Prove that β = 0.

We can consider:

Definition 53. Given a vector space V , the set L2(V )22 of bilinear forms on V is a vector space.

Warning 9. Make sure that you understand why the set L2(V ) is a vector space and that you understand
why it is different from L(V × V,F). This is extremely important!

Exercise 48. (i) Let β ∈ L2(V ), prove that, for every v ∈ V , β(v,−) and β(−, v) are linear maps.

(ii) Consider the function:

Φ1 : L2(V ) → L(V,L(V,F))
Φ1(β)(v) := β(v,−).

Prove that Φ1 is an isomorphism.

Remark 40. Let BV be a basis of V and β ∈ L2(V ) a bilinear form. The matrix of β in the basis
BV = {v1, . . . , vn} is defined by:

(M(β,BV ))ij := β(vi, vj).

In fact, the assignment M(−, BV ) : L2(V ) → FdimV,dimV is an isomorphisms of vector spaces. Indeed, it is
clear that M(−, BV ) is a linear map. Assume that M(β,BV ) = M(β′, BV ), then for every u1, u2 ∈ V we

let uj =
∑n
i=1 a

j
ivi, be the expression of u1 and u2 in the basis BV . Then we have:

β(u1, u2) =

n∑
i,k=1

M(β,BV )ika
1
i a

2
k

=

n∑
i,k=1

M(β,BV )ika
1
i a

2
k

= β′(u1, u2).

Thus, M(−, BV ) is injective. We can similarly prove that M(−, BV ) is surjective by defining β on a basis
using (bik)1≤i,k≤n ∈ FdimV,dimV .

In particular, we obtain that dimL2(V ) = n2.

22The book uses the notation V (2), which I find confusing–but there does not seem to be a consistent notation in the
literature.

https://qchu.wordpress.com/2012/11/05/introduction-to-string-diagrams/
https://qchu.wordpress.com/2012/11/06/string-diagrams-duality-and-trace/
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The following are some things we can prove by using the matrix representation of a bilinear form
introduced in Remark 40.

Lemma 71. Let β : V × V → F be a bilinar form and T : V → V an operator. We define two linear forms
β1 := β ◦ T × IdV and β2 := β ◦ IdV ×T . Consider a basis BV = {v1, . . . , vn}, then we have:

(i) M(β1, BV ) = M(T )tM(β);

(ii) M(β2, BV ) = M(β)M(T );

(iii) given another basis B′
V = {u1, . . . , un} we have:

(26) M(β,BV ) = M(IdV , BV , B
′
V )

tM(β,B′
V )M(IdV , BV , B

′
V ).

Proof. Exercise. See textbook §9A. □

Warning 10. We stress how formula (26) is different than formula (5). The relation between the two will
become clearer when we rewrite the vector spaces L2(V ) and L(V, V ) in terms of tensor products involving
V and its dual V ∨.

Exercise 49. Consider β : P2(R) × P2(R) → R given by β(p, q) = p(2)q′(3). Consider the basis BV =
{1, x, x2} and B′

V = {1, x− 2, (x− 3)2}. Check the formula (26) in this case.

Definition 54. A bilinear form β : V × V → F is said to be

• symmetric if it satisfies: β(v, u) = β(u, v) for every u, v ∈ V ;

• alternating if it satisfies: β(v, u) = −β(u, v) for every u, v ∈ V .

We will let L2
sym(V ) ⊆ L2(V ) and L2

alt(V ) ⊆ L2(V ) denote the subsets of symmetric and anti-symmetric
bilinear forms, respectively.

Remark 41. Notice that L2
sym(V ) is a subspace of L2(V ). Indeed, β = 0 belongs to both of them, so they

are non-zero. Given β1, β2 ∈ L2
sym(V ) we have:

(β1 + aβ2)(u, v) = β1(u, v) + aβ2(u, v) = β1(v, u) + aβ2(v, u) = (β1 + aβ2)(v, u),

for every u, v ∈ V and a ∈ F.
Similarly, one can check that L2

alt(V ) is a subspace of L2(V ). This is left as an exercise.

Exercise 50. Let β : V × V → F be a bilinear form. Prove that the following are equivalent:

(1) β(v, v) = 0 for all v ∈ V ;

(2) β is an alternating (bilinear) form.

Lemma 72. We have a decomposition of L2(V ) as follows:

L2(V ) = L2
sym(V )⊕ L2

alt(V ).

Proof. We leave this as an exercise. □

20. Apr. 22, 2024

20.1. Multilinear maps.

Definition 55. Let n ≥ 1 be a positive integer, a function β : V n → F is an n-linear map, if β is linear on
each factor, i.e. given {u1, . . . , un−1} fixed vectors in V the functions fi : V → F given by:

fi(v) := β(u1, . . . , ui−1, v, ui, . . . , un−1)

is linear, for 1 ≤ i ≤ n. We will denote the vector space of n-linear maps by Ln(V ).

Remark 42. In the textbook they call such multilinear n-forms, however in certain contexts n-form is
used for what we will call alternating n-linear map (see below). We will try to avoid this term so as not to
cause too much confusion. Notice however that this is in contrast with what we called bilinear form in the
previous section.
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Example 41. (i) Let α, β ∈ L2(V ), then γ((v1, v2, v3, v4)) := α(v1, v2)β(v3, v4) gives a 4-linear map γ.

(ii) Let β : (L(V ))m → F be given by

β(T1, . . . , Tm) = tr(T1 ◦ · · · ◦ Tm).

Then β is an m-linear map on L(V ).

Remark 43. Notice that for n ≥ 3, there is no matrix representation of n-linear maps as we had for bilinear
forms in Remark 40.

20.1.1. Interlude on symmetric group.

Definition 56. For every n ≥ 1 we let Sn denote the set of bijections from {1, . . . , n} to itself. The set Sn
forms a group23 which we call the symmetric group in n elements.

Given σ, τ ∈ Sn we will write στ for the composition σ◦τ . An element σ ∈ Sn is said to be a transposition
if there are i, j ∈ {1, . . . , n} such that

σ(k) =


k if k ̸= i and k ̸= j,

j if k = i;

i if k = j.

In this case we might denote σ = τij .
We define a function sign(−) : Sn → {±1}, via let [n] := 1 < 2 < · · · < n be a linear order on {1, . . . , n}

and consider σ([n]) := σ(1) < σ(2) < · · · < σ(n) the new order on the set {1, . . . , n}. We define I(σ) the
number of inversions on σ([n]) to be the number of pairs (i, j) ∈ [n] such that i < j and σ(j) < σ(i). Then
we let sign(σ) := (−1)I(σ). Here are couple of things that one can check:

Lemma 73. For every σ, τ ∈ Sn we have:

sign(σ ◦ τ) = sign(σ) sign(τ).

Also sign(τ) = (−1), for any transposition τ ∈ Sn.

Proof. Exercise. □

For V a vector space and σ ∈ Sn an element of the symmetric group we let:

ρσ : V ×n → V ×n

(v1, . . . , vn) 7→ (vσ(1), . . . , vσ(n)),

i.e. the map from V n to itself that sends the ith entry to the σ(i)th entry. Notice that ρσ is a linear map
and when σ = τij , ρτij (v1, . . . , vn) simply swaps vi with vj .

The following generalizes Definition 54 to n-linear forms:

Definition 57. A n-linear map β : V ×n → F is said to be:

• symmetric if for every transposition τij ∈ Sn we have β = β ◦ τij ;

• alternating if for every transposition τij ∈ Sn we have β = −β ◦ τij .

We let Lnsym(V ) and Lnalt(V ) denote the subspaces of symmetric and alternating n-linear maps.

Example 42. (i) Consider α : Fn × Fn × Fn → F given by

α((x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn)) := x1y2z3 − x2y1z3 − x3y2z1 − x1y3z2 + x3y1z2 + x2y3z1.

Check that α is an alternating 3-linear map.

(ii) Let V be a real inner product space. Consider α : V × V × V × V → F given by

α(v1, v2, v3, v4) := ⟨v1, v2⟩ ⟨v3, v4⟩+ ⟨v1, v3⟩ ⟨v2, v4⟩+ ⟨v1, v4⟩ ⟨v2, v3⟩ .

We claim that α is a symmetric 4-linear map.

23See here for a definition.

https://en.wikipedia.org/wiki/Group_(mathematics)
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Remark 44. Let β ∈ Ln(V ), then β is an alternating n-linear map if and only if

α(v1, . . . , vi, . . . , vj , . . . , vn) = 0, for every {v1, . . . , vn} ⊂ V, where vi = vj , for some i ̸= j.

Here are a couple of simple properties of alternating n-linear maps.

Lemma 74. (i) For every set {v1, . . . , vm} ⊂ V of linearly dependent vectors, we have

α(v1, . . . , vm) = 0

for every α ∈ Lmalt(V ).

(ii) Let m > dimV , then Lmalt(V ) = {0}.

Proof. For (i). Let
∑m
i=1 aivi = 0 be a non-trivial linear combination of the given vectors. Let j ∈ {1, . . . ,m}

such that aj ̸= 0. Then we have:

α(v1, . . . , vj , . . . , vm) = −
m∑

i=1, i ̸=j

aiα(v1, . . . , vi, . . . , vm) = 0,

where each term in the sum vanishes by Remark 44.
For (ii), assume by contradiction that there exist {v1, . . . , vm} ⊂ V such that α(v1, . . . , vm) ̸= 0. By (i),

we have that {v1, . . . , vm} is linearly independent, which is a contradiction with dimV < m. □

Here is a useful consequence of Lemma 74:

Corollary 23. Let α ∈ Lnalt(V ), where n = dimV and consider a set of vectors {e1, . . . , en} ⊂ V . Then the
following are equivalent:

(1) α(e1, . . . , en) ̸= 0;

(2) {e1, . . . , en} is linearly independent.

Proof. (1) ⇒ (2) is the converse of Lemma 74 (i).
For (2) ⇒ (1) there exist {v1, . . . , vn} ⊂ V such that α(v1, . . . , vn) ̸= 0. Since {e1, . . . , en} are n linearly

independent vectors, they form a basis. Let vi =
∑n
j=1 ai,jej then we compute:

α(v1, . . . , vn) = α(

n∑
j1=1

ai,j1ej1 , . . . ,

n∑
jn=1

ai,jnejn)

=

n∑
j1=1

· · ·
n∑

jn=1

a1,j1 · · · . . . · an,jnα(ej1 , . . . , ejn)

=
∑
σ∈Sn

a1,σ(1) · · · . . . · an,σ(n)α(eσ(1), . . . , eσ(n))

= α(e1, . . . , en)
∑
σ∈Sn

sign(σ)a1,σ(1) · · · . . . · an,σ(n),

where the second line is equal to the third line, because α(ej1 , . . . , ejn) vanishes if ji = jk for two i, k ∈
{1, . . . , n} such that i ̸= k. Thus, α(e1, . . . , en) ̸= 0. □

Remark 45. Let {e1, . . . , en} be a basis of V and consider a list of vectors {v1, . . . , vn}. In the proof of
Corollary 23 we obtained the following very useful formula. Let vi =

∑n
j=1 ai,jej , then

(27) α(v1, . . . , vn) =

(∑
σ∈Sn

sign(σ)a1,σ(1) · · · . . . · an,σ(n)

)
α(e1, . . . , en),

for any α ∈ Lnalt(V ).

The following result is important to define the determinant.

Proposition 15. Let V be a vector space of dimension n. Then dimLnalt(V ) = 1.

Proof. The proof is a bit lengthy, but the ideas are simple. See 9.37 in the textbook. □
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20.2. (Multi)linear maps in terms of tensor products. The goal of this section is to reformulate the
content of §19.3 and §20.1 in terms of tensor products.

Corollary 24. Let V be a finite-dimensional vector space, then one has an equivalence:

V ∨ ⊗ V ∨ ∼−→ L2(V ).

More generally, for every n ≥ 2 we have (V ∨)⊗n
∼−→ Ln(V ).

Proof. Consider the following sequence of isomorphisms:

V ∨ ⊗ V ∨ (V ⊗ V )∨ L(V ⊗ V,F) L(V,L(V,F)) L2(V )≃ =

φ−1
V,V,F

≃
Φ−1

1

≃ ,

where the first isomorphism is Lemma 67, the third is Lemma 66, and the last isomorphism is from Exercise
48 (ii).

The case n ≥ 3 can be proved by induction, we leave it to the reader to check the details. □

Finish this section in the future.

21. Apr. 22, 2024

21.1. Determinant of an operator. We notice that given T : V → V an operator, one has an induced
map T ∗ : Lnalt(V ) → Lnalt(V ) defined as follows:

(T ∗α)(v1, . . . , vn) := α(Tv1, . . . , T vn).

Indeed, it is easy to check that the above is well-defined, i.e. T ∗α is still an alternating n-linear map,
and that the assignment α 7→ T ∗α is linear.

Definition 58. Let T : V → V be an operator on a finite-dimensional vector space, then for any non-zero
alternating form α ∈ Lnalt(V ) we have:

T ∗(α) = (detT )α

for an unique detT ∈ F. We call detT the determinant of T .

Remark 46. It is clear, from Proposition 15 that detT does not depend on the choice of α ∈ Lnalt, as long
as it is non-zero.

Example 43. (i) Consider IdV : V → V then one has (IdV )
∗α = α for every α ∈ LdimV

alt (V ), thus
det(IdV ) = 1.

(ii) More generally, for any λ ∈ F notice that (λ IdV )
∗α = λdimV α, so we have det(λ IdV ) = λdimV .

(iii) Let T : V → V be diagonalizable and consider {v1, . . . , vn} a basis of eigenvectors with eigenvalues
λ1, . . . , λn, respectively. Notice that for any α ∈ Lnalt(V ) we have:

(detT )α(v1, . . . , vn) = T ∗α(v1, . . . , vn) = α(Tv1, . . . , T vn) = α(λ1v1, . . . , λnvn) = (

n∏
i=1

λi)α(v1, . . . , vn).

Thus, if α(v1, . . . , vn) ̸= 0, then detT = (
∏n
i=1 λi).

We notice how Definition 58 is very elegant and doesn’t involve any choice of basis. We can actually use
it to define determinant of matrices as follows:

Definition 59. Let A ∈ Fn,n be an n-by-n matrix, we let:

det(A) := detTA,

where TA : Fn → Fn is the operator on F such that M(TA, BV ) = A, where BV = {e1, . . . , en} is the
standard basis of Fn.

Lemma 75. Consider α : Fn → F defined by:

α(v1, . . . , vn) = det (v1 · · · vn) ,

where (v1 · · · vn) is the matrix obtained by considering the n vectors v1, . . . , vn as its columns. Then α is an
alternating n-linear map.
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Proof. Let {e1, . . . , en} be the standard basis of Fn and consider the operator T : Fn → Fn uniquely defined
by T (ei) = vi. Then it is clear that detT = det (v1 · · · vn). Let β : Fn → F be an alternating form such that
β(e1, . . . , en) = 1. Then

det (v1 · · · vn) = detT

= (detT )β(e1, . . . , en)

= β(Te1, . . . , T en)

= β(v1, . . . , vn).

□

Here is a consequence of the previous Lemma.

Lemma 76. Let A ∈ Fn,n then we have:

(28) det(A) =
∑
σ∈Sn

sign(σ)Aσ(1),1 · . . . ·Aσ(n),n.

Proof. Exercise. □

Lemma 77. (i) Let S, T ∈ L(V ), then det(S ◦ T ) = det(S) det(T ).

(ii) Let A,B ∈ Fn,n be two n by n matrices, then

det(AB) = det(A) det(B).

Proof. For (i), let α ∈ Lnalt(V ) be an alternating multilinear map on V , where n = dimV . Then we have:

(ST )∗(α)(v1, . . . , vn) = α(STv1, . . . , STvn)

= det(S)α(Tv1, . . . , T vn)

= det(S) det(T )α(v1, . . . , vn).

Thus, by picking v1, . . . , vn such that α(v1, . . . , vn) ̸= 0; we conclude that det(S) det(T ) = det(ST ).
(ii) follows from (i), we leave the details to the reader. □

Lemma 78. Let T ∈ L(V ), then T is invertible if and only if detT ̸= 0. Moreover, if T is invertible then
detT−1 = (detT )−1.

Proof. Assume that T is invertible, then 1 = det(IdV ) = det(TT−1) = det(T ) det(T−1), which implies that
det(T ) ̸= 0.

Now assume that detT ̸= 0. We will prove that T is injective. Let v ∈ V be a non-zero vector. Consider
{v, e2, . . . , en} an extension to a basis of V . Let α ∈ Lnalt(V ) be a non-zero alternating multilinear map, by
Corollary 23 we have:

α(Tv, Te2, . . . , T en) = (detT )α(v, e2, . . . , en) ̸= 0,

which implies that Tv ̸= 0 as we needed to prove. □

Here is a consequence for eigenvalues, which sometimes is taken as the definition of eigenvalues.

Corollary 25. Let T ∈ L(V ), then λ is an eigenvalue of T if and only if det(T − λ IdV ) = 0.

Proof. By Lemma 78 we see that T − λ IdV is not injective, i.e. λ is an eigenvalue (see Definition 28) if and
only if det(T − λ IdV ) = 0. □

Exercise 51. (i) Let T ∈ L(V ) and S : V → W be an invertible linear map, i.e. an isomorphism. Prove
that det(T ) = det(STS−1).

(ii) Let T ∈ L(V ) and BV a basis of V , then detT = det(M(T,BV )).

Corollary 26. Let T ∈ L(V ) where V is a finite-dimensional complex vector space.

(i) detT is the product of all the eigenvalues of T ;
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(ii) let λ1, . . . , λm be the list of eigenvalues of T and d1, . . . , dm their (algebraic) multiplicities, respectively,
then:

(29) det(z IdV −T ) =
m∏
i=1

(z − λi)
di = cT (z).

Proof. By Corollary 15 and Proposition 13, there exists a basis BV , such that M(T,BV ) is upper-triangular
with the eigenvalues λi of T on the diagonal appearing exactly di times each.

(i) and (ii) now follow directly from (28) and Exercise 51 (ii). □

Exercise 52. Let T ∈ L(V ).

(i) Consider T∨ ∈ L(V ∨) the dual operator determined by T . Then detT = detT∨.

(ii) Assume that V is an inner product space. Then detT ∗ = detT , where T ∗ ∈ L(V ) is the adjoint
operator.

Definition 60. Let V be a vector space either over C or R and T ∈ L(V ), then the characteristic polynomial
of T is defined as:

cT (z) := det(z IdV −T ).

Notice that this agrees with Definition 47 in the case of F = C, by formula (29).

Theorem 11 (Cayley–Hamilton theorem). Let V be a finite-dimensional vector space, then cT (T ) = 0. In
particular, we obtain that the characteristic polynomial cT is a multiple of the minimal polynomial pT .

Proof. The case of complex vector spaces is Theorem 8.
Assume that F = R and let A := M(T,BV ), where BV is the standard basis of V . Let SA be the

operator on CdimV whose matrix with respect to the standard basis of CdimV is A. Then for all z ∈ R we
have:

q(z) = det(z IdV −T ) = det(zI −A) = det(z IdCdimV −SA).

Thus, q(z) is the characteristic polynomial of SA, and by the complex case, we obtain q(T ) = q(A) =
q(SA) = 0. □

Lemma 79. Let T ∈ L(V ) and n = dimV . Then the characteristic polynomial of T has the form:

(30) cT (z) = zn − (trT )zn−1 + · · ·+ (−1)n(detT ).

Proof. The constant term is given by det(−T ), which is given by (−1)n detT , since ((−1)T )∗α = (−1)∗T ∗α
for any α ∈ Lnalt(V ).

Now let BV be a basis of V and A = M(T,BV ). Then the term coming from the identity permutation
e ∈ Sn in formula (28) applied to det(zI −A) gives:

(31) (z −A1,1) · . . . · (z −An,n).

Notice that the terms coming from other permutations σ ∈ Sn have at most n − 2 factors of the form
(z − Ak,k), thus they don’t contribute to the coefficients of zn and zn−1. We can now read the parts of
formula (30) from (31). □
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