Math 2102: Homework 5 Due on: Apr. 29 at 11:59 pm.

All assignments must be submitted via Moodle. Precise and adequate explanations should be given to each problem. Exercises marked with Extra might be more challenging or a digression, so they won't be graded.

- 1. Let $n \geq 1$. Consider $\beta: V^{\times n} \to \mathbb{F}$ an *n*-linear map.
 - (i) Let $\alpha: V^{\times n} \to \mathbb{F}$ be defined by

$$\alpha(v_1,\ldots,v_n) := \sum_{\sigma \in S_n} \operatorname{sign}(\sigma)\beta(v_{\sigma(1)},\ldots,v_{\sigma(n)}).$$

Prove that $\alpha \in \mathcal{L}^n_{alt}(V)$, i.e. α is an alternating *n*-linear map.

(ii) Let $\alpha: V^{\times n} \to \mathbb{F}$ be defined by

$$\alpha(v_1,\ldots,v_n):=\sum_{\sigma\in S_n}\beta(v_{\sigma(1)},\ldots,v_{\sigma(n)}).$$

Prove that $\alpha \in \mathcal{L}_{sym}^n(V)$, i.e. α is a symmetric *n*-linear map.

- (iii) Give an example of an alternating 2-linear map α on \mathbb{R}^3 such that there are linearly independent vectors v_1, v_2 in \mathbb{R}^3 such that $\alpha(v_1, v_2) \neq 0$.
- 2. Let $T \in \mathcal{L}(V)$ be an operator.
 - (i) Assume that T has no eigenvalues. Prove that $\det T > 0$.
 - (ii) Suppose that V is a real vector space of odd-dimension. Without using the minimal polynomial, prove that T has an eigenvalue.
- 3. Given vector spaces V, V', V'' we say that a composition of morphisms:

$$V' \xrightarrow{\imath_V} V \xrightarrow{p_V} V''$$

is an *exact sequence*, if it satisfies:

- a) null $i_V = \{0\};$
- b) range $i_V = \operatorname{null} p_V$;
- c) range $p_V = V''$.

Consider two exact sequences $V' \xrightarrow{\imath_V} V \xrightarrow{p_V} V''$ and $U' \xrightarrow{\imath_U} U \xrightarrow{p_V} U''$.

(i) Prove that one has an exact sequence:

$$V' \oplus U' \xrightarrow{\iota_V \oplus \iota_U} V \oplus U \xrightarrow{p_U \oplus p_V} V'' \oplus U''$$

(ii) Prove that there are linear maps:

$$V' \otimes U' \xrightarrow{\iota_V \otimes \iota_U} V \otimes U \xrightarrow{p_V \otimes p_U} V'' \otimes U''. \tag{1}$$

(iii) Is the sequence (1) exact? What fails? Consider the cases of V and U trivial, one-dimensional and with dimension(s) greater than two to understand the general answer.