Math 2102: Homework 5 Solutions

- 1. Let $n \geq 1$. Consider $\beta: V^{\times n} \to \mathbb{F}$ an *n*-linear map.
	- (i) Let $\alpha: V^{\times n} \to \mathbb{F}$ be defined by

$$
\alpha(v_1,\ldots,v_n):=\sum_{\sigma\in S_n}\mathrm{sign}(\sigma)\beta(v_{\sigma(1)},\ldots,v_{\sigma(n)}).
$$

Prove that $\alpha \in \mathcal{L}^n_{\text{alt}}(V)$, i.e. α is an alternating *n*-linear map.

Solution. Let $\tau \in S_n$ we have:

$$
\tau^* \alpha(v_1, \dots, v_n) = \alpha(v_{\tau(1)}, \dots, v_{\tau(n)})
$$

\n
$$
= \sum_{\sigma \in S_n} \text{sign}(\sigma) \beta(v_{\sigma \tau(1)}, \dots, v_{\sigma \tau(n)})
$$

\n
$$
= (-1)^{\tau} \sum_{\sigma \in S_n} \text{sign}(\sigma \tau) \beta(v_{\sigma \tau(1)}, \dots, v_{\sigma \tau(n)})
$$

\n
$$
= (-1)^{\tau} \sum_{\sigma' \in S_n} \text{sign}(\sigma') \beta(v_{\sigma'(1)}, \dots, v_{\sigma'(n)})
$$

\n
$$
= (-1)^{\tau} \alpha(v_1, \dots, v_n),
$$

where in the fourth equality we used the change of variables $\sigma \mapsto \sigma' := \sigma \tau$, which gives the same sum, since $(-)\tau : S_n \to S_n$ is a bijection.

(ii) Let $\alpha: V^{\times n} \to \mathbb{F}$ be defined by

$$
\alpha(v_1,\ldots,v_n):=\sum_{\sigma\in S_n}\beta(v_{\sigma(1)},\ldots,v_{\sigma(n)}).
$$

Prove that $\alpha \in \mathcal{L}^n_{sym}(V)$, i.e. α is a symmetric *n*-linear map. **Solution.** Let $\tau \in S_n$ we have:

$$
\tau^* \alpha(v_1, \dots, v_n) = \alpha(v_{\tau(1)}, \dots, v_{\tau(n)})
$$

=
$$
\sum_{\sigma \in S_n} \beta(v_{\sigma \tau(1)}, \dots, v_{\sigma \tau(n)})
$$

=
$$
\sum_{\sigma' \in S_n} \beta(v_{\sigma'(1)}, \dots, v_{\sigma'(n)})
$$

=
$$
\alpha(v_1, \dots, v_n),
$$

where in the third equality is justified as in (i).

(iii) Give an example of an alternating 2-linear map α on \mathbb{R}^3 such that there are linearly independent vectors v_1, v_2 in \mathbb{R}^3 such that $\alpha(v_1, v_2) \neq 0$.

Solution. We define $\alpha : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ by $\alpha((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_2 - x_2y_1$. Notice that this is alternating, since $\alpha((y_1, y_2, y_3), (x_1, x_2, x_3)) = -(x_1y_2 - x_2y_1)$. We have

$$
\alpha((1,0,0),(0,1,0)) = 1.
$$

- 2. Let $T \in \mathcal{L}(V)$ be an operator.
	- (i) Assume that T has no eigenvalues. Prove that $\det T > 0$.

Solution. Assume by contradiction that $\det T < 0$. Consider T as an operator with complex coefficients, i.e. $T_{\mathbb{C}}$. We know that $T_{\mathbb{C}}$ has eigenvalues, as an operator over a finite-dimensional complex vector space and that $\det T = \det(T_{\mathbb{C}}) = \prod_{i=1}^n \lambda_i$. Since $\det T$ is real, up to reordering we have that the product of eigenvalues λ_i can be split into two parts:

$$
\det T = \prod_{i=1}^{m} \lambda_i \prod_{j=1}^{(n-m)/2} \lambda_{2j-1+m} \lambda_{2j+m},
$$

where $\{\lambda_1,\ldots,\lambda_m\}\subset\mathbb{R}$ and $\{\lambda_{m+1},\ldots,\lambda_n\}$ are complex with $\lambda_{\lambda_{2j-1+m}}=\overline{\lambda_{2j+m}}$. This implies that

$$
\det T = c \prod_{i=1}^{m} \lambda_i,
$$

for some $c \geq 0$. Since $\det T < 0$, we have that $c > 0$. Now if $T_{\mathbb{C}}$ had no real eigenvalues, then $\prod_{i=1}^{m} \lambda_i = 1$, which would imply that $\det T > 0$. So there exists $\lambda \in \mathbb{R}$ such that λ is an eigenvalue of $T_{\mathbb{C}}$, so λ is an eigenvalue of T, by HW 2, Exercise 3 (i).

(ii) Suppose that V is a real vector space of odd-dimension. Without using the minimal polynomial, prove that T has an eigenvalue.

Solution. There are two cases, consider $\det T = 0$. In this case, T is not injective, which implies that 0 is an eigenvalue.

So we can consider $\det T = a \neq 0$. If $a < 0$, then (i) gives that T has an eigenvalue. If $a > 0$, we notice that (by Example 43 (ii) in the Lecture Notes)

$$
\det(-T) = (-1)^{\dim V} \det T < 0.
$$

So $-T$ has an eigenvalue, i.e. $-Tv = \lambda v$ for some non-zero $v \in V$, this implies that $-\lambda$ is an eigenvalue of T. And we are done.

3. Given vector spaces V, V', V'' we say that a composition of morphisms:

$$
V' \xrightarrow{i_V} V \xrightarrow{p_V} V'' \tag{1}
$$

is an exact sequence, if it satisfies:

- a) null $\nu = \{0\};$
- b) range $i_V = \text{null } p_V$;
- c) range $p_V = V''$.

Consider two exact sequences $V' \xrightarrow{i_V} V \xrightarrow{p_V} V''$ and $U' \xrightarrow{i_U} U \xrightarrow{p_V} U''$.

(i) Prove that one has an exact sequence:

$$
V' \oplus U' \xrightarrow{\iota_V \oplus \iota_U} V \oplus U \xrightarrow{\mathit{p}_U \oplus \mathit{p}_V} V'' \oplus U''.
$$

Solution. For a), let $x \in V' \oplus U'$ then $x = v + u$, with $v \in V'$ and $u \in U'$ such that

$$
i_V \oplus i_U(x) = i_V(v) + i_U(u) = 0.
$$

Since $i_V(v) \in V$ and $i_U(u) \in U$ we obtain that $i_V(v) = 0$ and $i_U(u) = 0$, which since i_V and u_U ar injective gives that $v = 0$ and $u = 0$, so $x = 0$.

For c), let $x \in V'' \oplus U''$ given by $x = v + u$, with $v \in V''$ and $u \in U''$. Let $\tilde{v} \in V$ and \tilde{u} such that $p_V(\tilde{v}) = v$ and $p_U(\tilde{u}) = u$, then we compute:

$$
p_V \oplus p_U(\tilde{v} + \tilde{u}) = p_V(\tilde{v}) + p_U(\tilde{u}) = v + u = x.
$$

So $p_V \oplus p_U$ is surjective.

For b), we need to prove both inclusions. Let $x \in \text{range}(i_V \oplus i_U)$, then $x = i_V(v) + i_U(u)$ for some $v \in V'$ and $u \in U'$. We compute:

$$
p_V \oplus p_U(\imath_V(v) + \imath_U(u)) = p_V \circ \imath_V(v) + p_U \circ \imath_U(u) = 0,
$$

where the middle equality is justified because $i_V(v) \in V$ and $i_U(u) \in U$. Let $x \in null(p_V \oplus p_U)$, then $x = v + u$ for some $v \in V$ and $u \in U$ such that

$$
p_V \oplus p_U(v+u) = p_V(v) + p_U(u) = 0.
$$

Since $p_V(v) \in V''$ and $p_U(u) \in U''$ we have that $p_V(v) = 0 = p_U(u)$. Thus, by assumption there exists $\tilde{v} \in V'$ and $\tilde{u} \in U'$ such that $v = i_V(\tilde{v})$ and $u = i_U(\tilde{u})$. Then we see that

$$
(\imath_V \oplus \imath_U)(\tilde{v} + \tilde{u}) = \imath_V(\tilde{v}) + \imath_U(\tilde{u}) = v + u = x.
$$

This finishes the proof.

(ii) Prove that there are linear maps:

$$
V' \otimes U' \xrightarrow{i_V \otimes i_U} V \otimes U \xrightarrow{p_V \otimes p_U} V'' \otimes U''.
$$
 (2)

Solution. This follows from Exercise λ (i) in Tutorial 8.

(iii) Is the sequence (2) exact? What fails? Consider the cases of V and U trivial, one-dimensional and with dimension(s) greater than two to understand the general answer.

Solution. First we prove the following. Given an exact sequence as (1) , then

$$
\dim V = \dim V'' + \dim V'.\tag{3}
$$

Indeed, by the fundamental theorem applied to p_V and i_V we obtain:

 $\dim V = \dim \operatorname{null} p_V + \dim \operatorname{range} p_V \quad and \quad \dim V' = \dim \operatorname{null} i_V + \dim \operatorname{range} i_V.$

Now a) gives that dim null $\iota_V = 0$, b) that dim null $\iota_V = \dim \operatorname{range} \iota_V$ and c) that dim range $\iota_V =$ V'' . Combining all of this gives (3) .

Thus, if (2) were exact we would obtain:

 $\dim V \dim U = \dim(V \otimes U) = \dim V' \dim U' + \dim V'' \dim U''$.

Since dim $V = \dim V' + \dim V''$ and $\dim U = \dim U' + \dim U''$. We obtain:

 $\dim V' \dim U' + \dim V'' \dim U'' + \dim V' \dim U'' + \dim V'' \dim U' = \dim V' \dim U' + \dim V'' \dim U''$.

Notice that if either $\dim V'$ dim U'' or $\dim V''$ dim U' are non-zero, then we obtain a contradiction.

In fact, we can prove that a) and c) always hold by considering bases of these vector spaces. So the main problem is b).

If dim $V = 1$, then either (1) $V' \simeq V$, which gives that [\(2\)](#page-2-0) is exact if and only if $U' \simeq U$ or [\(2\)](#page-2-0) $V \simeq V''$, which gives that (2) is exact if and only if $U \simeq U''$. If either of V or U are trivial, then [\(2\)](#page-2-0) is also exact, since it is simply the sequence $\{0\} \stackrel{0}{\rightarrow} \{0\} \stackrel{0}{\rightarrow} \{0\}$.