Math 2102: Homework 5

Solutions

1. Let n > 1. Consider 8 : V*™ — F an n-linear map.

(i) Let o : V™ — F be defined by

a(vl,...,v,) = Z sign(a)B(Va(1ys - - Vo(n))-

O'ESn

Prove that o € L}, (V), i.e. « is an alternating n-linear map.

Solution. Let 7 € S,, we have:

T (V1,5 ) = A(Vr1)s - -5 Vr(n))
= Z Sigl’l(O’)ﬁ(’UUT(l), s 77)0'7'(71,))
0ESK
=(-1)" Z sign(o7) B(Ver(1)s - - - s Vor(n))
og€Sy
= (=17 Z sign(a')ﬁ(val(l), )
o’/eS,

=(—1)"a(vy,...,vn),
where in the fourth equality we used the change of variables o — o' := o1, which gives the
same sum, since (—)7T : S, — Sy is a bijection.

(ii) Let a: V*"™ — T be defined by

a(v,...,0n) = Z BVa(1)s -+ > Vo(n))-

oESH

Prove that o € L%

sm(V), Le. a is a symmetric n-linear map.

Solution. Let 7 € S,, we have:

T*a(vlv SRR Un) = a(UT(l)a s )UT(TL))
= Z B(’UO'T(l)’ R 7UO'T(’VL))
gESy
= Z B(’Uo-l(l), ‘e 7v0’(n))
o’eS,
= OZ(’Ul, s 7Un)7

where in the third equality is justified as in (i).

(iii) Give an example of an alternating 2-linear map « on R? such that there are linearly indepen-
dent vectors vy, vo in R? such that a(vy,v2) # 0.

Solution. We define o : R? x R? — R by a((x1, z2, 23), (y1,y2,¥y3)) = 21y2 — T2y1. Notice
that this is alternating, since a((y1,y2,93), (x1,x2,23)) = —(x1y2 — T2y1). We have

a((1,0,0),(0,1,0)) = 1.



2. Let T' € L(V') be an operator.

(i) Assume that 7" has no eigenvalues. Prove that detT" > 0.

Solution. Assume by contradiction that detT < 0. Consider T' as an operator with complex
coefficients, i.e. Tc. We know that T has eigenvalues, as an operator over a finite-dimensional
complez vector space and that det T = det(Tc) =[]y Ai. Since det T is real, up to reordering
we have that the product of eigenvalues A\; can be split into two parts:

(n—m)/2

m
detT = H i H A2j—14mA2j4m,
i=1 j=1
where {\1,..., Am} C R and {\p41,..., \n} are complex with Moj_14m = A2j+m- This implies
that .
detT =c H Ais
i=1

for some ¢ > 0. Since detT < 0, we have that ¢ > 0. Now if Tc had no real eigenvalues,
then [[i2; Ai = 1, which would imply that det T > 0. So there exists A € R such that X is an
eigenvalue of T, so X is an eigenvalue of T ,by HW 2, Exercise 3 (i).

(ii) Suppose that V is a real vector space of odd-dimension. Without using the minimal polyno-
mial, prove that T has an eigenvalue.

Solution. There are two cases, consider detT = 0. In this case, T is not injective, which
implies that 0 is an eigenvalue.

So we can consider det T = a # 0. If a <0, then (i) gives that T has an eigenvalue. If a > 0,
we notice that (by Example 43 (ii) in the Lecture Notes)

det(=T) = (1) V det T < 0.

So =T has an eigenvalue, i.e. —Tv = Av for some non-zero v € V, this implies that —\ is an
eigenvalue of T'. And we are done.

3. Given vector spaces V, V', V" we say that a composition of morphisms:
\% v 174 pv v (1)
is an exact sequence, if it satisfies:

a) nulley = {0};
b) range:y = null py;
c) rangepy = V".

. v pv 2 pv
Consider two exact sequences V' —— V —5 V" and U —— U —= U" .

(i) Prove that one has an exact sequence:

ViU NV, yvayu PUEV yra g,



Solution. For a), let x € V' & U’ then x = v+ u, withv € V' and u € U’ such that
w @ (x) =w(v) +w(u) =0.

Since 1wy (v) € V and w(u) € U we obtain that 1y (v) = 0 and 1y (u) = 0, which since vy and
w ar injective gives that v =0 and u =10, so x = 0.

For¢), let x € V" & U" given by x =v+u, withv € V" and w € U". Let v € V and @ such
that py (0) = v and py () = u, then we compute:

pv @ pu (v +a) = py(0) + pr(a) =v+u =z

So py @ py is surjective.
For b), we need to prove both inclusions. Let x € range(vy @ w), then x = w (v) + 1y (u) for
somev € V' and uw € U'. We compute:

pv © pu (v (v) +w(u)) = pyv oy (v) + py ow(u) =0,

where the middle equality is justified because vy (v) € V and wy(u) € U. Let x € null(py ®pr),
then x = v +u for somev € V and u € U such that

py @ py(v+u) = py(v) + pr(u) = 0.

Since py(v) € V" and py(u) € U” we have that py(v) = 0 = py(u). Thus, by assumption
there exists © € V' and @ € U’ such that v =1y (0) and u =1y (a). Then we see that

(wedw)v+a) =w@)+w@) =v+u=uz.
This finishes the proof.
(ii) Prove that there are linear maps:
ViU 2 Ve U Y v e U, 2)

Solution. This follows from Exercise 4 (i) in Tutorial 8.

(iii) Is the sequence (2) exact? What fails? Consider the cases of V and U trivial, one-dimensional
and with dimension(s) greater than two to understand the general answer.

Solution. First we prove the following. Given an exact sequence as (1), then
dimV = dim V" + dim V". (3)
Indeed, by the fundamental theorem applied to py and v, we obtain:
dimV = dimnull py + dimrangepy and dimV’ = dimnullsy, + dimrangey .

Now a) gives that dimnullvy = 0, b) that dim null pyy = dimrangey and ¢) that dim range py =
V", Combining all of this gives (3).
Thus, if (2) were exact we would obtain:

dimVdimU = dim(V ® U) =dim V' dim U’ + dim V" dim U”.
Since dmV =dim V' +dim V" and dim U = dim U’ + dim U"”. We obtain:

dim V' dim U'+dim V" dim U” +dim V' dim U”+dim V" dim U’ = dim V' dim U’ +dim V" dim U".
(4)



Notice that if either dim V' dimU” or dim V" dim U’ are non-zero, then we obtain a contra-
diction.

In fact, we can prove that a) and c) always hold by considering bases of these vector spaces.
So the main problem is b).

If dimV =1, then either (1) V' =~V , which gives that (2) is exact if and only if U' ~ U or
(2) V >~ V" which gives that (2) is exact if and only if U ~ U". If either of V or U are
trivial, then (2) is also exact, since it is simply the sequence {0} RN {0} RN {0}.



