
Math 2102: Homework 5
Solutions

1. Let n ≥ 1. Consider β : V ×n → F an n-linear map.

(i) Let α : V ×n → F be defined by

α(v1, . . . , vn) :=
∑
σ∈Sn

sign(σ)β(vσ(1), . . . , vσ(n)).

Prove that α ∈ Ln
alt(V ), i.e. α is an alternating n-linear map.

Solution. Let τ ∈ Sn we have:

τ∗α(v1, . . . , vn) = α(vτ(1), . . . , vτ(n))

=
∑
σ∈Sn

sign(σ)β(vστ(1), . . . , vστ(n))

= (−1)τ
∑
σ∈Sn

sign(στ)β(vστ(1), . . . , vστ(n))

= (−1)τ
∑
σ′∈Sn

sign(σ′)β(vσ′(1), . . . , vσ′(n))

= (−1)τα(v1, . . . , vn),

where in the fourth equality we used the change of variables σ 7→ σ′ := στ , which gives the
same sum, since (−)τ : Sn → Sn is a bijection.

(ii) Let α : V ×n → F be defined by

α(v1, . . . , vn) :=
∑
σ∈Sn

β(vσ(1), . . . , vσ(n)).

Prove that α ∈ Ln
sym(V ), i.e. α is a symmetric n-linear map.

Solution. Let τ ∈ Sn we have:

τ∗α(v1, . . . , vn) = α(vτ(1), . . . , vτ(n))

=
∑
σ∈Sn

β(vστ(1), . . . , vστ(n))

=
∑
σ′∈Sn

β(vσ′(1), . . . , vσ′(n))

= α(v1, . . . , vn),

where in the third equality is justified as in (i).

(iii) Give an example of an alternating 2-linear map α on R3 such that there are linearly indepen-
dent vectors v1, v2 in R3 such that α(v1, v2) ̸= 0.

Solution. We define α : R3 × R3 → R by α((x1, x2, x3), (y1, y2, y3)) = x1y2 − x2y1. Notice
that this is alternating, since α((y1, y2, y3), (x1, x2, x3)) = −(x1y2 − x2y1). We have

α((1, 0, 0), (0, 1, 0)) = 1.
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2. Let T ∈ L(V ) be an operator.

(i) Assume that T has no eigenvalues. Prove that detT > 0.

Solution. Assume by contradiction that detT < 0. Consider T as an operator with complex
coefficients, i.e. TC. We know that TC has eigenvalues, as an operator over a finite-dimensional
complex vector space and that detT = det(TC) =

∏n
i=1 λi. Since detT is real, up to reordering

we have that the product of eigenvalues λi can be split into two parts:

detT =
m∏
i=1

λi

(n−m)/2∏
j=1

λ2j−1+mλ2j+m,

where {λ1, . . . , λm} ⊂ R and {λm+1, . . . , λn} are complex with λλ2j−1+m
= λ2j+m. This implies

that

detT = c
m∏
i=1

λi,

for some c ≥ 0. Since detT < 0, we have that c > 0. Now if TC had no real eigenvalues,
then

∏m
i=1 λi = 1, which would imply that detT > 0. So there exists λ ∈ R such that λ is an

eigenvalue of TC, so λ is an eigenvalue of T ,by HW 2, Exercise 3 (i).

(ii) Suppose that V is a real vector space of odd-dimension. Without using the minimal polyno-
mial, prove that T has an eigenvalue.

Solution. There are two cases, consider detT = 0. In this case, T is not injective, which
implies that 0 is an eigenvalue.

So we can consider detT = a ̸= 0. If a < 0, then (i) gives that T has an eigenvalue. If a > 0,
we notice that (by Example 43 (ii) in the Lecture Notes)

det(−T ) = (−1)dimV detT < 0.

So −T has an eigenvalue, i.e. −Tv = λv for some non-zero v ∈ V , this implies that −λ is an
eigenvalue of T . And we are done.

3. Given vector spaces V, V ′, V ′′ we say that a composition of morphisms:

V ′ V V ′′ıV pV
(1)

is an exact sequence, if it satisfies:

a) null ıV = {0};
b) range ıV = null pV ;

c) range pV = V ′′.

Consider two exact sequences V ′ V V ′′ıV pV
and U ′ U U ′′ıU pV

.

(i) Prove that one has an exact sequence:

V ′ ⊕ U ′ V ⊕ U V ′′ ⊕ U ′′.
ıV ⊕ıU pU⊕pV
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Solution. For a), let x ∈ V ′ ⊕ U ′ then x = v + u, with v ∈ V ′ and u ∈ U ′ such that

ıV ⊕ ıU (x) = ıV (v) + ıU (u) = 0.

Since ıV (v) ∈ V and ıU (u) ∈ U we obtain that ıV (v) = 0 and ıU (u) = 0, which since ıV and
ıU ar injective gives that v = 0 and u = 0, so x = 0.

For c), let x ∈ V ′′ ⊕ U ′′ given by x = v + u, with v ∈ V ′′ and u ∈ U ′′. Let ṽ ∈ V and ũ such
that pV (ṽ) = v and pU (ũ) = u, then we compute:

pV ⊕ pU (ṽ + ũ) = pV (ṽ) + pU (ũ) = v + u = x.

So pV ⊕ pU is surjective.

For b), we need to prove both inclusions. Let x ∈ range(ıV ⊕ ıU ), then x = ıV (v) + ıU (u) for
some v ∈ V ′ and u ∈ U ′. We compute:

pV ⊕ pU (ıV (v) + ıU (u)) = pV ◦ ıV (v) + pU ◦ ıU (u) = 0,

where the middle equality is justified because ıV (v) ∈ V and ıU (u) ∈ U . Let x ∈ null(pV ⊕pU ),
then x = v + u for some v ∈ V and u ∈ U such that

pV ⊕ pU (v + u) = pV (v) + pU (u) = 0.

Since pV (v) ∈ V ′′ and pU (u) ∈ U ′′ we have that pV (v) = 0 = pU (u). Thus, by assumption
there exists ṽ ∈ V ′ and ũ ∈ U ′ such that v = ıV (ṽ) and u = ıU (ũ). Then we see that

(ıV ⊕ ıU )(ṽ + ũ) = ıV (ṽ) + ıU (ũ) = v + u = x.

This finishes the proof.

(ii) Prove that there are linear maps:

V ′ ⊗ U ′ V ⊗ U V ′′ ⊗ U ′′.
ıV ⊗ıU pV ⊗pU

(2)

Solution. This follows from Exercise 4 (i) in Tutorial 8.

(iii) Is the sequence (2) exact? What fails? Consider the cases of V and U trivial, one-dimensional
and with dimension(s) greater than two to understand the general answer.

Solution. First we prove the following. Given an exact sequence as (1), then

dimV = dimV ′′ + dimV ′. (3)

Indeed, by the fundamental theorem applied to pV and ıV we obtain:

dimV = dimnull pV + dim range pV and dimV ′ = dimnull ıV + dim range ıV .

Now a) gives that dimnull ıV = 0, b) that dimnull pV = dim range ıV and c) that dim range pV =
V ′′. Combining all of this gives (3).

Thus, if (2) were exact we would obtain:

dimV dimU = dim(V ⊗ U) = dimV ′ dimU ′ + dimV ′′ dimU ′′.

Since dimV = dimV ′ + dimV ′′ and dimU = dimU ′ + dimU ′′. We obtain:

dimV ′ dimU ′+dimV ′′ dimU ′′+dimV ′ dimU ′′+dimV ′′ dimU ′ = dimV ′ dimU ′+dimV ′′ dimU ′′.
(4)
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Notice that if either dimV ′ dimU ′′ or dimV ′′ dimU ′ are non-zero, then we obtain a contra-
diction.

In fact, we can prove that a) and c) always hold by considering bases of these vector spaces.
So the main problem is b).

If dimV = 1, then either (1) V ′ ≃ V , which gives that (2) is exact if and only if U ′ ≃ U or
(2) V ≃ V ′′, which gives that (2) is exact if and only if U ≃ U ′′. If either of V or U are

trivial, then (2) is also exact, since it is simply the sequence {0} 0→ {0} 0→ {0}.
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