Math 2102: Homework 4

Solutions

1. Let T, S : V — V be two operators on a complex finite-dimensional inner product space. Assume
that T'S = ST.

(i) Prove that there is an orthonormal basis of V' with respect to which 7" and S are upper-
triangular.

Solution. By Ezercise 2. (iii) from HW 3 for the set € .= {S,T} C L(V'), we know that there
exists a basis By = {v1,...,v,} such that M(T, By) and M(S, By) are both upper-triangular,
1.€.

T(v;) € Span{vy,...,v;} and S(v;) € Span{vy,...,v;}

for every i € {1,...,n}.
Let By, = {e1,...,en} be the basis obtained from By via the Gram-Schmidt procedure. We
prove by induction on i that T'(e;) € Span{ei,...,e;} and S(e;) € Span{ey, ..., e;}.

Fori =1, since e1 := mvl, we have that

T(ey) = H;HT(M) € Span {v1} — Span {e1}

and stmilarly for S.

Now assume that we proved the claim for every i < k. Notice that
T(ex) = T(vg — ug) = T(vg) — T'(u),

where uy, € Span{ey,...,ex_1} and T(u) € Span{ey,...,ex_1} by the inductive hypothesis.
By Theorem 3 in the Lecture Notes, we have

T(vg) € Span{vy,...,vx} = Span{ey,...,ex},

which gives that T'(ex) € Span{ey,...,ex}. Ezactly the same argument applies to S. So we
are done.

(ii) Assume that 7" is normal. Use (i) to give a different proof of the complex spectral theorem.

Solution. Let T' be a normal operator. By Ezercise 2. (iii) from HW 3 and (i) above there
exists an orthonormal basis By such that M(T, By) and M(T*, By) are upper-triangular.
Since By is orthonormal, we have:

M(T*, By) = M(T, By)'
which implies that M(T, By), and hence M(T*, By) are diagonal.
2. Let F=R, T € L(V) and A € C. Recall the definition of T¢ : Vo — Vi from Exercise 3 in HW 2.

(i) Show that u + v € G(A, T¢) if and only if u — iv € G(\, Tg).

Solution. Let u +iv € V, we prove by induction on k, that
(Te — Nr(u+iv) =0 = (Te — N)F(u —iv) = 0.

For k =1, this is Exercise 3 (i) from HW2.



Let (Tc — N)(u+ iv) = v’ + i/, then we have that
(Te — N1 (W 4 ') =0,
which implies that
(Te — N — i) = 0.
Since A € R we have v’ = T'(u) — M and v/ = T(v) — Av, so we obtain:
(Te — N — i) = (Te = N U T(w) — du—i(T(v) — W) = (Te — N)F(u — iv).

The other direction is proved in exactly the same way, which gives the conclusion of the
question.

(ii) Show that the (algebraic) multiplicity of A as an eigenvalue of Tt is the same as the (algebraic)
multiplicity of A as an eigenvalue of T¢.

Solution. Recall that the algebraic multiplicity A in Tc is dim G(\, Tc). Let {vi,...,vn} be
a basis of G(\,It). For each i, we write:

v =e;+ifi, fore;, fi €V.

Let0; := e;—if; be vectors in dim G(\, T¢), notice that they belong to the generalized eigenspace
of X by (i). We claim that {v7,...,0,} is a basis of G\, Tc).

Firstly, we show that {v1,...,v,} span G\, Tc), let v+iu € G\, Tc), then v—iu € G(\, Tc)
so there are a1,...,a, € C such that

v—iu = ZawZ = Z x; +1y;)(e; +if;)

=1

Z xzez yzfz + Z(yzez + l'zfz))

where a; = x; + 1y;. So

n

v+ iu = Z((xiei —yifi) —i(yiei + xi f;))

i=1

= Z Zyz €; Zfz)
-3 mm
=1

Secondly, we check that {v71,...,0,} are linearly independent. Indeed, assume that there are
ai, -+ ,an € C such that

n

Zalvz = Z (zi +iyi)(e; —ifi) = Z((fEi@i +yifi) +i(yiei — i fi)) =0
i=1

i=1

This implies that

n

Z((miei +yifi) =0 and Z(yiei —z;f;) =0. (1)

i=1 =1



Consider the linear combination:

n n n

D @i =Y (wi—iy)(ei+ifi) = > ((wiei +yifi) — i(yiei — wifi) =0,

i=1 i=1 i=1
where the last equation comes by substituting (1) for the real and imaginary part. Since
{vi,...,vn} are linearly independent, we have that a7 = --- = @, = 0, which gives that
o) =+ =ay =0. This finishes the proof.

(iii) Use (ii) to show that if dim V' is an odd number, then Tt has a real eigenvalue.

Solution. Assume that all eigenvalues of X of Tc are complex, then by (ii) and the generalized
etgenspace decomposition we have that:

Ve = @G\, Te) @ 2, G(Ni, Te).

Thus, we obtain that dim Ve = >, 2dim G(\;, Tc). Since dim Ve = dimV, notice that
dim V¢ is the dimension of Vo as a complex vector space and dim V' is the dimension of V as
a real vector space. This is a contradiction with dim 'V being odd.

(iv) Use (iii) to give an alternative proof of Proposition 6 in the Lecture Notes, namely that dim V'
is odd then 7" has an eigenvalue.

Solution. Let T': V. — V be an operator on an odd-dimensional real vector space, consider
Tc : Vo — V. By (iii), Te has a real eigenvalue. By HW 2 Ezercise 3 (i), we have that X is
an etgenvalue of T.

3. Assume F = C and consider 7' € L(V') an operator on a finite-dimensional vector space. Prove
that there does not exist a decomposition of V into a direct sum of two T-invariant subspaces if
and only if the minimal polynomial of T"is (z — A)4™V for some A € C.

Solution. First assume that there does not exist a decomposition of V into a direct sum of two
T-invariant subspaces. Since we are over C we have that

V=G\T)
for a single eigenvalue A € C. Let
A 0 0
M(T.Bv)=|0o . 0
0 0 A

denote the Jordan form of T for some Jordan basis By . If one of the blocks A; is smaller than n
by n, say k by k ,we can consider {vj,,...,v;,} the vectors of the basis corresponding to this block
and it is clear that V.= U @ W, with U = Span{vj,,...,vj,} and W spanned by the remaining
elements of the basis. This implies that the matriz A representing T — X has only 1’s above the
diagonal and 0 everywhere else. Let n = dimV, clearly we have A™ = 0 and A"~! # 0, which gives
(T —X)" =0 and (T — \)"~! # 0; that is the minimal polynomial has the form claimed.

Suppose that pr(z) = (z—\)4™V. Then the Jordan form of T has X in the diagonal and 1 just above
it, since otherwise (z — \)*¥ =0 for some k < dimV. Assume that U ® W is a decomposition of V
into subspaces both of which are non-zero. Then U and W are also invariant under N := (T — \),
which implies that N|: U — U and N|, : W — W are both nilpotent, which gives that

NM:(N‘U@N‘W)M:(N‘U)M@(N‘W)M:07

where M = max{dimU,dim W} < dimV; which is a contradiction with pp being the minimal
polynomial of T .



4. Let V and W be two finite-dimensional inner product spaces.

(i)

Prove that (S, T) := tr(T*S) determines an inner product on L(V, W) x L(V,W).

Solution. By definition we have that tr(\T} + To) = A tr(Ty) + tr(12). Since (AT)* = NT* it
15 clear that

<51 + A\So, T> = <51,T> + A <SQ,T> and <S, T + )\T2> = <S, T1> + X<S, T2> .

We need to check that for any T, we have tr(TT*) > 0. Indeed,

n

(TT*) = (e, TT*(e)) = Y [T"eil|* > 0,
=1

i=1
where in the first equality we used {e1, ..., ey} some orthonormal basis of V and the formula
for the trace in terms of matrix representation.
Assume that tr(TT*), then we have 31, | T*e;||> = 0, which only happens if T*e; = 0 for
each e;, which implies that T*. Thus, T = 0 by picking an orthonormal basis of V.
Finally, by considering By an orthonormal basis of V. we have:

tl“(T*S) = iM(T*S, BV)i,i = iM((T*S)*,Bv)i,i = iM(S’*T, Bv) = tI‘(S*T).

=1 =1 =1

Let By = {ei,...,en} be an orthonormal basis of V and By = {fi,..., fm} be an orthonor-
mal basis of W. Let (—, =) 4 : F™" x F™ — F be the standard inner product on F™" (i.e.
Example 23 (i) and (ii) from the Lecture Notes). Let M(—, By, By) : L(V,W) — F™ be
the isomorphism given by the matrix coefficients. Prove that

<S’ T> = <M(57 BV7BW)7M(T7 BV,BW))std (2)

for all S,T € L(V,W).

Solution. Let S,T € L(V,W) and A := M(S,By,Bw) and B := M(T, By, Byw) be the
matrices in F™"™. We compute the left-hand side of (2):

tI‘(T*S) = zn: zm: A;r,ij,i.

i=1 j=1
For the left-hand side of (2) we have:

n m

<M(Sa BV7 BW)? M(T7 BV7 BW)>std = Z Z B]v'LAJvZ

i=1 j=1

Since Az,j = E, we obtain that the equality we needed to prove.



