
Math 2102: Homework 4
Solutions

1. Let T, S : V → V be two operators on a complex finite-dimensional inner product space. Assume
that TS = ST .

(i) Prove that there is an orthonormal basis of V with respect to which T and S are upper-
triangular.

Solution. By Exercise 2. (iii) from HW 3 for the set E := {S, T} ⊂ L(V ), we know that there
exists a basis BV = {v1, . . . , vn} such that M(T,BV ) and M(S,BV ) are both upper-triangular,
i.e.

T (vi) ∈ Span {v1, . . . , vi} and S(vi) ∈ Span {v1, . . . , vi}

for every i ∈ {1, . . . , n}.
Let B′

V = {e1, . . . , en} be the basis obtained from BV via the Gram–Schmidt procedure. We
prove by induction on i that T (ei) ∈ Span {e1, . . . , ei} and S(ei) ∈ Span {e1, . . . , ei}.
For i = 1, since e1 :=

1
∥v1∥v1, we have that

T (e1) =
1

∥v1∥
T (v1) ∈ Span {v1} = Span {e1}

and similarly for S.

Now assume that we proved the claim for every i < k. Notice that

T (ek) = T (vk − uk) = T (vk)− T (uk),

where uk ∈ Span {e1, . . . , ek−1} and T (uk) ∈ Span {e1, . . . , ek−1} by the inductive hypothesis.
By Theorem 3 in the Lecture Notes, we have

T (vk) ∈ Span {v1, . . . , vk} = Span {e1, . . . , ek},

which gives that T (ek) ∈ Span {e1, . . . , ek}. Exactly the same argument applies to S. So we
are done.

(ii) Assume that T is normal. Use (i) to give a different proof of the complex spectral theorem.

Solution. Let T be a normal operator. By Exercise 2. (iii) from HW 3 and (i) above there
exists an orthonormal basis BV such that M(T,BV ) and M(T ∗, BV ) are upper-triangular.
Since BV is orthonormal, we have:

M(T ∗, BV ) = M(T,BV )
†

which implies that M(T,BV ), and hence M(T ∗, BV ) are diagonal.

2. Let F = R, T ∈ L(V ) and λ ∈ C. Recall the definition of TC : VC → VC from Exercise 3 in HW 2.

(i) Show that u+ iv ∈ G(λ, TC) if and only if u− iv ∈ G(λ, TC).

Solution. Let u+ iv ∈ V , we prove by induction on k, that

(TC − λ)k(u+ iv) = 0 ⇒ (TC − λ)k(u− iv) = 0.

For k = 1, this is Exercise 3 (ii) from HW2.
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Let (TC − λ)(u+ iv) = u′ + iv′, then we have that

(TC − λ)k−1(u′ + iv′) = 0,

which implies that
(TC − λ)k−1(u′ − iv′) = 0.

Since λ ∈ R we have u′ = T (u)− λu and v′ = T (v)− λv, so we obtain:

(TC − λ)k−1(u′ − iv′) = (TC − λ)k−1(T (u)− λu− i(T (v)− λv)) = (TC − λ)k(u− iv).

The other direction is proved in exactly the same way, which gives the conclusion of the
question.

(ii) Show that the (algebraic) multiplicity of λ as an eigenvalue of TC is the same as the (algebraic)
multiplicity of λ as an eigenvalue of TC.

Solution. Recall that the algebraic multiplicity λ in TC is dimG(λ, TC). Let {v1, . . . , vn} be
a basis of G(λ, TC). For each i, we write:

vi = ei + ifi, for ei, fi ∈ V.

Let vi := ei−ifi be vectors in dimG(λ, TC), notice that they belong to the generalized eigenspace
of λ by (i). We claim that {v1, . . . , vn} is a basis of G(λ, TC).

Firstly, we show that {v1, . . . , vn} span G(λ, TC), let v+ iu ∈ G(λ, TC), then v− iu ∈ G(λ, TC)
so there are a1, . . . , an ∈ C such that

v − iu =

n∑
i=1

aivi =

n∑
i=1

(xi + iyi)(ei + ifi)

=

n∑
i=1

((xiei − yifi) + i(yiei + xifi)),

where ai = xi + iyi. So

v + iu =
n∑

i=1

((xiei − yifi)− i(yiei + xifi))

=
n∑

i=1

(xi − iyi)(ei − ifi)

=

n∑
i=1

aivi.

Secondly, we check that {v1, . . . , vn} are linearly independent. Indeed, assume that there are
a1, · · · , an ∈ C such that

n∑
i=1

aivi =

n∑
i=1

(xi + iyi)(ei − ifi) =

n∑
i=1

((xiei + yifi) + i(yiei − xifi)) = 0.

This implies that
n∑

i=1

((xiei + yifi) = 0 and

n∑
i=1

(yiei − xifi) = 0. (1)
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Consider the linear combination:
n∑

i=1

aivi =
n∑

i=1

(xi − iyi)(ei + ifi) =
n∑

i=1

((xiei + yifi)− i(yiei − xifi)) = 0,

where the last equation comes by substituting (1) for the real and imaginary part. Since
{v1, . . . , vn} are linearly independent, we have that α1 = · · · = αn = 0, which gives that
α1 = · · · = αn = 0. This finishes the proof.

(iii) Use (ii) to show that if dimV is an odd number, then TC has a real eigenvalue.

Solution. Assume that all eigenvalues of λ of TC are complex, then by (ii) and the generalized
eigenspace decomposition we have that:

VC = ⊕m
i=1G(λi, TC)⊕⊕m

i=1G(λi, TC).

Thus, we obtain that dimVC =
∑m

i=1 2 dimG(λi, TC). Since dimVC = dimV , notice that
dimVC is the dimension of VC as a complex vector space and dimV is the dimension of V as
a real vector space. This is a contradiction with dimV being odd.

(iv) Use (iii) to give an alternative proof of Proposition 6 in the Lecture Notes, namely that dimV
is odd then T has an eigenvalue.

Solution. Let T : V → V be an operator on an odd-dimensional real vector space, consider
TC : VC → VC. By (iii), TC has a real eigenvalue. By HW 2 Exercise 3 (i), we have that λ is
an eigenvalue of T .

3. Assume F = C and consider T ∈ L(V ) an operator on a finite-dimensional vector space. Prove
that there does not exist a decomposition of V into a direct sum of two T -invariant subspaces if
and only if the minimal polynomial of T is (z − λ)dimV for some λ ∈ C.

Solution. First assume that there does not exist a decomposition of V into a direct sum of two
T -invariant subspaces. Since we are over C we have that

V = G(λ, T )

for a single eigenvalue λ ∈ C. Let

M(T,BV ) =

A1 0 0

0
. . . 0

0 0 Ak


denote the Jordan form of T for some Jordan basis BV . If one of the blocks Ai is smaller than n
by n, say k by k ,we can consider {vj1 , . . . , vjk} the vectors of the basis corresponding to this block
and it is clear that V = U ⊕ W , with U = Span {vj1 , . . . , vjk} and W spanned by the remaining
elements of the basis. This implies that the matrix A representing T − λ has only 1’s above the
diagonal and 0 everywhere else. Let n = dimV , clearly we have An = 0 and An−1 ̸= 0, which gives
(T − λ)n = 0 and (T − λ)n−1 ̸= 0; that is the minimal polynomial has the form claimed.

Suppose that pT (z) = (z−λ)dimV . Then the Jordan form of T has λ in the diagonal and 1 just above
it, since otherwise (z − λ)k = 0 for some k < dimV . Assume that U ⊕W is a decomposition of V
into subspaces both of which are non-zero. Then U and W are also invariant under N := (T − λ),
which implies that N | : U → U and N |W : W → W are both nilpotent, which gives that

NM = (N |U ⊕ N |W )M = (N |U )
M ⊕ (N |W )M = 0,

where M = max{dimU,dimW} < dimV ; which is a contradiction with pT being the minimal
polynomial of T .
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4. Let V and W be two finite-dimensional inner product spaces.

(i) Prove that ⟨S, T ⟩ := tr(T ∗S) determines an inner product on L(V,W )× L(V,W ).

Solution. By definition we have that tr(λT1 + T2) = λ tr(T1) + tr(T2). Since (λT )∗ = λT ∗ it
is clear that

⟨S1 + λS2, T ⟩ = ⟨S1, T ⟩+ λ ⟨S2, T ⟩ and ⟨S, T1 + λT2⟩ = ⟨S, T1⟩+ λ ⟨S, T2⟩ .

We need to check that for any T , we have tr(TT ∗) ≥ 0. Indeed,

tr(TT ∗) =
n∑

i=1

⟨ei, TT ∗(ei)⟩ =
n∑

i=1

∥T ∗ei∥2 ≥ 0,

where in the first equality we used {e1, . . . , en} some orthonormal basis of V and the formula
for the trace in terms of matrix representation.

Assume that tr(TT ∗), then we have
∑n

i=1 ∥T ∗ei∥2 = 0, which only happens if T ∗ei = 0 for
each ei, which implies that T ∗. Thus, T = 0 by picking an orthonormal basis of V .

Finally, by considering BV an orthonormal basis of V we have:

tr(T ∗S) =
n∑

i=1

M(T ∗S,BV )i,i =
n∑

i=1

M((T ∗S)∗, BV )i,i =

n∑
i=1

M(S∗T,BV ) = tr(S∗T ).

(ii) Let BV = {e1, . . . , en} be an orthonormal basis of V and BW = {f1, . . . , fm} be an orthonor-
mal basis of W . Let ⟨−,−⟩std : Fmn × Fmn → F be the standard inner product on Fmn (i.e.
Example 23 (i) and (ii) from the Lecture Notes). Let M(−, BV , BW ) : L(V,W )

∼−→ Fmn be
the isomorphism given by the matrix coefficients. Prove that

⟨S, T ⟩ = ⟨M(S,BV , BW ),M(T,BV , BW )⟩std (2)

for all S, T ∈ L(V,W ).

Solution. Let S, T ∈ L(V,W ) and A := M(S,BV , BW ) and B := M(T,BV , BW ) be the
matrices in Fm,n. We compute the left-hand side of (2):

tr(T ∗S) =
n∑

i=1

m∑
j=1

A†
i,jBj,i.

For the left-hand side of (2) we have:

⟨M(S,BV , BW ),M(T,BV , BW )⟩std =
n∑

i=1

m∑
j=1

Bj,iAj,i.

Since A†
i,j = Aj,i, we obtain that the equality we needed to prove.
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