Math 2102: Homework 4 Solutions

- 1. Let $T, S : V \to V$ be two operators on a complex finite-dimensional inner product space. Assume that TS = ST.
 - (i) Prove that there is an orthonormal basis of V with respect to which T and S are upper-triangular.

Solution. By Exercise 2. (iii) from HW 3 for the set $\mathcal{E} := \{S, T\} \subset \mathcal{L}(V)$, we know that there exists a basis $B_V = \{v_1, \ldots, v_n\}$ such that $\mathcal{M}(T, B_V)$ and $\mathcal{M}(S, B_V)$ are both upper-triangular, *i.e.*

$$T(v_i) \in \text{Span}\{v_1, \dots, v_i\} \text{ and } S(v_i) \in \text{Span}\{v_1, \dots, v_i\}$$

for every $i \in \{1, ..., n\}$.

Let $B'_V = \{e_1, \ldots, e_n\}$ be the basis obtained from B_V via the Gram-Schmidt procedure. We prove by induction on i that $T(e_i) \in \text{Span} \{e_1, \ldots, e_i\}$ and $S(e_i) \in \text{Span} \{e_1, \ldots, e_i\}$. For i = 1, since $e_1 := \frac{1}{\|v_1\|} v_1$, we have that

$$T(e_1) = \frac{1}{\|v_1\|} T(v_1) \in \text{Span} \{v_1\} = \text{Span} \{e_1\}$$

and similarly for S.

Now assume that we proved the claim for every i < k. Notice that

$$T(e_k) = T(v_k - u_k) = T(v_k) - T(u_k),$$

where $u_k \in \text{Span} \{e_1, \ldots, e_{k-1}\}$ and $T(u_k) \in \text{Span} \{e_1, \ldots, e_{k-1}\}$ by the inductive hypothesis. By Theorem 3 in the Lecture Notes, we have

$$T(v_k) \in \operatorname{Span} \{v_1, \dots, v_k\} = \operatorname{Span} \{e_1, \dots, e_k\},\$$

which gives that $T(e_k) \in \text{Span} \{e_1, \ldots, e_k\}$. Exactly the same argument applies to S. So we are done.

(ii) Assume that T is normal. Use (i) to give a different proof of the complex spectral theorem.

Solution. Let T be a normal operator. By Exercise 2. (iii) from HW 3 and (i) above there exists an orthonormal basis B_V such that $\mathcal{M}(T, B_V)$ and $\mathcal{M}(T^*, B_V)$ are upper-triangular. Since B_V is orthonormal, we have:

$$\mathcal{M}(T^*, B_V) = \mathcal{M}(T, B_V)^{\dagger}$$

which implies that $\mathcal{M}(T, B_V)$, and hence $\mathcal{M}(T^*, B_V)$ are diagonal.

- 2. Let $\mathbb{F} = \mathbb{R}$, $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{C}$. Recall the definition of $T_{\mathbb{C}} : V_{\mathbb{C}} \to V_{\mathbb{C}}$ from Exercise 3 in HW 2.
 - (i) Show that $u + iv \in G(\lambda, T_{\mathbb{C}})$ if and only if $u iv \in G(\overline{\lambda}, T_{\mathbb{C}})$.

Solution. Let $u + iv \in V$, we prove by induction on k, that

$$(T_{\mathbb{C}} - \lambda)^k (u + iv) = 0 \implies (T_{\mathbb{C}} - \overline{\lambda})^k (u - iv) = 0.$$

For k = 1, this is Exercise 3 (ii) from HW2.

Let $(T_{\mathbb{C}} - \lambda)(u + iv) = u' + iv'$, then we have that

$$(T_{\mathbb{C}} - \lambda)^{k-1}(u' + iv') = 0,$$

which implies that

$$(T_{\mathbb{C}} - \overline{\lambda})^{k-1}(u' - iv') = 0.$$

Since $\lambda \in \mathbb{R}$ we have $u' = T(u) - \lambda u$ and $v' = T(v) - \lambda v$, so we obtain:

$$(T_{\mathbb{C}} - \overline{\lambda})^{k-1}(u' - iv') = (T_{\mathbb{C}} - \overline{\lambda})^{k-1}(T(u) - \lambda u - i(T(v) - \lambda v)) = (T_{\mathbb{C}} - \overline{\lambda})^{k}(u - iv).$$

The other direction is proved in exactly the same way, which gives the conclusion of the question.

(ii) Show that the (algebraic) multiplicity of λ as an eigenvalue of $T_{\mathbb{C}}$ is the same as the (algebraic) multiplicity of $\overline{\lambda}$ as an eigenvalue of $T_{\mathbb{C}}$.

Solution. Recall that the algebraic multiplicity λ in $T_{\mathbb{C}}$ is dim $G(\lambda, T_{\mathbb{C}})$. Let $\{v_1, \ldots, v_n\}$ be a basis of $G(\lambda, T_{\mathbb{C}})$. For each *i*, we write:

$$v_i = e_i + if_i, \quad for \ e_i, f_i \in V.$$

Let $\overline{v_i} := e_i - if_i$ be vectors in dim $G(\overline{\lambda}, T_{\mathbb{C}})$, notice that they belong to the generalized eigenspace of $\overline{\lambda}$ by (i). We claim that $\{\overline{v_1}, \ldots, \overline{v_n}\}$ is a basis of $G(\overline{\lambda}, T_{\mathbb{C}})$.

Firstly, we show that $\{\overline{v_1}, \ldots, \overline{v_n}\}$ span $G(\overline{\lambda}, T_{\mathbb{C}})$, let $v + iu \in G(\overline{\lambda}, T_{\mathbb{C}})$, then $v - iu \in G(\lambda, T_{\mathbb{C}})$ so there are $a_1, \ldots, a_n \in \mathbb{C}$ such that

$$v - iu = \sum_{i=1}^{n} a_i v_i = \sum_{i=1}^{n} (x_i + iy_i)(e_i + if_i)$$
$$= \sum_{i=1}^{n} ((x_i e_i - y_i f_i) + i(y_i e_i + x_i f_i)),$$

where $a_i = x_i + iy_i$. So

$$v + iu = \sum_{i=1}^{n} ((x_i e_i - y_i f_i) - i(y_i e_i + x_i f_i))$$
$$= \sum_{i=1}^{n} (x_i - iy_i)(e_i - if_i)$$
$$= \sum_{i=1}^{n} \overline{a_i v_i}.$$

Secondly, we check that $\{\overline{v_1}, \ldots, \overline{v_n}\}$ are linearly independent. Indeed, assume that there are $a_1, \cdots, a_n \in \mathbb{C}$ such that

$$\sum_{i=1}^{n} a_i \overline{v_i} = \sum_{i=1}^{n} (x_i + iy_i)(e_i - if_i) = \sum_{i=1}^{n} ((x_i e_i + y_i f_i) + i(y_i e_i - x_i f_i)) = 0.$$

This implies that

$$\sum_{i=1}^{n} ((x_i e_i + y_i f_i) = 0 \quad and \quad \sum_{i=1}^{n} (y_i e_i - x_i f_i) = 0.$$
(1)

Consider the linear combination:

$$\sum_{i=1}^{n} \overline{a_i} v_i = \sum_{i=1}^{n} (x_i - iy_i)(e_i + if_i) = \sum_{i=1}^{n} ((x_i e_i + y_i f_i) - i(y_i e_i - x_i f_i)) = 0,$$

where the last equation comes by substituting (1) for the real and imaginary part. Since $\{v_1, \ldots, v_n\}$ are linearly independent, we have that $\overline{\alpha_1} = \cdots = \overline{\alpha_n} = 0$, which gives that $\alpha_1 = \cdots = \alpha_n = 0$. This finishes the proof.

(iii) Use (ii) to show that if dim V is an odd number, then $T_{\mathbb{C}}$ has a real eigenvalue.

Solution. Assume that all eigenvalues of λ of $T_{\mathbb{C}}$ are complex, then by (ii) and the generalized eigenspace decomposition we have that:

$$V_{\mathbb{C}} = \bigoplus_{i=1}^{m} G(\lambda_i, T_{\mathbb{C}}) \oplus \bigoplus_{i=1}^{m} G(\overline{\lambda_i}, T_{\mathbb{C}}).$$

Thus, we obtain that $\dim V_{\mathbb{C}} = \sum_{i=1}^{m} 2 \dim G(\lambda_i, T_{\mathbb{C}})$. Since $\dim V_{\mathbb{C}} = \dim V$, notice that $\dim V_{\mathbb{C}}$ is the dimension of $V_{\mathbb{C}}$ as a complex vector space and $\dim V$ is the dimension of V as a real vector space. This is a contradiction with $\dim V$ being odd.

(iv) Use (iii) to give an alternative proof of Proposition 6 in the Lecture Notes, namely that $\dim V$ is odd then T has an eigenvalue.

Solution. Let $T: V \to V$ be an operator on an odd-dimensional real vector space, consider $T_{\mathbb{C}}: V_{\mathbb{C}} \to V_{\mathbb{C}}$. By (iii), $T_{\mathbb{C}}$ has a real eigenvalue. By HW 2 Exercise 3 (i), we have that λ is an eigenvalue of T.

3. Assume $\mathbb{F} = \mathbb{C}$ and consider $T \in \mathcal{L}(V)$ an operator on a finite-dimensional vector space. Prove that there does not exist a decomposition of V into a direct sum of two T-invariant subspaces if and only if the minimal polynomial of T is $(z - \lambda)^{\dim V}$ for some $\lambda \in \mathbb{C}$.

Solution. First assume that there does not exist a decomposition of V into a direct sum of two T-invariant subspaces. Since we are over \mathbb{C} we have that

$$V = G(\lambda, T)$$

for a single eigenvalue $\lambda \in \mathbb{C}$. Let

$$\mathcal{M}(T, B_V) = \begin{pmatrix} A_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & A_k \end{pmatrix}$$

denote the Jordan form of T for some Jordan basis B_V . If one of the blocks A_i is smaller than n by n, say k by k, we can consider $\{v_{j_1}, \ldots, v_{j_k}\}$ the vectors of the basis corresponding to this block and it is clear that $V = U \oplus W$, with $U = \text{Span}\{v_{j_1}, \ldots, v_{j_k}\}$ and W spanned by the remaining elements of the basis. This implies that the matrix A representing $T - \lambda$ has only 1's above the diagonal and 0 everywhere else. Let $n = \dim V$, clearly we have $A^n = 0$ and $A^{n-1} \neq 0$, which gives $(T - \lambda)^n = 0$ and $(T - \lambda)^{n-1} \neq 0$; that is the minimal polynomial has the form claimed.

Suppose that $p_T(z) = (z - \lambda)^{\dim V}$. Then the Jordan form of T has λ in the diagonal and 1 just above it, since otherwise $(z - \lambda)^k = 0$ for some $k < \dim V$. Assume that $U \oplus W$ is a decomposition of V into subspaces both of which are non-zero. Then U and W are also invariant under $N := (T - \lambda)$, which implies that $N : U \to U$ and $N|_W : W \to W$ are both nilpotent, which gives that

$$N^{M} = (N|_{U} \oplus N|_{W})^{M} = (N|_{U})^{M} \oplus (N|_{W})^{M} = 0$$

where $M = \max\{\dim U, \dim W\} < \dim V$; which is a contradiction with p_T being the minimal polynomial of T.

- 4. Let V and W be two finite-dimensional inner product spaces.
 - (i) Prove that $\langle S, T \rangle := \operatorname{tr}(T^*S)$ determines an inner product on $\mathcal{L}(V, W) \times \mathcal{L}(V, W)$.
 - **Solution.** By definition we have that $\operatorname{tr}(\lambda T_1 + T_2) = \lambda \operatorname{tr}(T_1) + \operatorname{tr}(T_2)$. Since $(\lambda T)^* = \overline{\lambda}T^*$ it is clear that

$$\langle S_1 + \lambda S_2, T \rangle = \langle S_1, T \rangle + \lambda \langle S_2, T \rangle$$
 and $\langle S, T_1 + \lambda T_2 \rangle = \langle S, T_1 \rangle + \overline{\lambda} \langle S, T_2 \rangle$.

We need to check that for any T, we have $tr(TT^*) \ge 0$. Indeed,

$$\operatorname{tr}(TT^*) = \sum_{i=1}^n \langle e_i, TT^*(e_i) \rangle = \sum_{i=1}^n \|T^*e_i\|^2 \ge 0,$$

where in the first equality we used $\{e_1, \ldots, e_n\}$ some orthonormal basis of V and the formula for the trace in terms of matrix representation.

Assume that $\operatorname{tr}(TT^*)$, then we have $\sum_{i=1}^n ||T^*e_i||^2 = 0$, which only happens if $T^*e_i = 0$ for each e_i , which implies that T^* . Thus, T = 0 by picking an orthonormal basis of V. Finally, by considering B_V an orthonormal basis of V we have:

$$\operatorname{tr}(T^*S) = \sum_{i=1}^n \mathcal{M}(T^*S, B_V)_{i,i} = \sum_{i=1}^n \overline{\mathcal{M}((T^*S)^*, B_V)_{i,i}} = \overline{\sum_{i=1}^n \mathcal{M}(S^*T, B_V)} = \operatorname{tr}(S^*T).$$

(ii) Let $B_V = \{e_1, \ldots, e_n\}$ be an orthonormal basis of V and $B_W = \{f_1, \ldots, f_m\}$ be an orthonormal basis of W. Let $\langle -, - \rangle_{\text{std}} : \mathbb{F}^{mn} \times \mathbb{F}^{mn} \to \mathbb{F}$ be the standard inner product on \mathbb{F}^{mn} (i.e. Example 23 (i) and (ii) from the Lecture Notes). Let $\mathcal{M}(-, B_V, B_W) : \mathcal{L}(V, W) \xrightarrow{\sim} \mathbb{F}^{mn}$ be the isomorphism given by the matrix coefficients. Prove that

$$\langle S, T \rangle = \langle \mathcal{M}(S, B_V, B_W), \mathcal{M}(T, B_V, B_W) \rangle_{\text{std}}$$
⁽²⁾

for all $S, T \in \mathcal{L}(V, W)$.

Solution. Let $S, T \in \mathcal{L}(V, W)$ and $A := \mathcal{M}(S, B_V, B_W)$ and $B := \mathcal{M}(T, B_V, B_W)$ be the matrices in $\mathbb{F}^{m,n}$. We compute the left-hand side of (2):

$$\operatorname{tr}(T^*S) = \sum_{i=1}^n \sum_{j=1}^m A_{i,j}^{\dagger} B_{j,i}$$

For the left-hand side of (2) we have:

$$\langle \mathcal{M}(S, B_V, B_W), \mathcal{M}(T, B_V, B_W) \rangle_{\text{std}} = \sum_{i=1}^n \sum_{j=1}^m B_{j,i} \overline{A_{j,i}}.$$

Since $A_{i,j}^{\dagger} = \overline{A_{j,i}}$, we obtain that the equality we needed to prove.