
Math 2102: Homework 3
Solutions

1. Let T : V → V be an operator on a finite-dimensional complex vector space. Prove that the
following are equivalent:

(1) T is diagonalizable (i.e. it satisfies Proposition 7 from the Lecture Notes);

(2) V = null(T − λ IdV )⊕ range(T − λ IdV ) for every λ ∈ C;
(3) the minimal polynomial pT =

∏m
i=1(z − λi), where {λ1, . . . , λm} are distinct;

(4) there does not exist λ ∈ C such that pT is a multiple of (z − λ)2;

(5) pT and p′T have no zeros in common;

(6) the greatest common divisor of pT and p′T is the constant polynomial 1.

Solution. (1) ⇒ (2): let {λ1, . . . , λm} be all the eigenvalues of T . We claim that null(T −λ IdV )∩
range(T − λ IdV ) = {0}. Let v ∈ null(T − λ IdV ) ∩ range(T − λ IdV ), then v ∈ E(λi, T ) for some
i ∈ {1, . . . ,m}. We have:

(T − λ)(v) = (λi − λ)v = 0,

since v ̸= 0, we get λ = λi. But if v = (T − λ)(u) by the same reasoning we obtain v = 0, which is
a contradiction.

(2) ⇒ (1): by Proposition 4, there exist λ1 an eigenvalue of T , i.e. null(T − λ1 IdV ) ̸= {0}. Let
T |range(T−λ1 IdV ) : range(T − λ1 IdV ) → range(T − λ1 IdV ), by Proposition 4, there exists λ2 such
that E(λ2, T |range(T−λ1 IdV )) ̸= {0}. Proceeding like this we obtain a chain:

V = null(T − λ1 IdV )⊕ range(T − λ1 IdV )

= null(T − λ1 IdV )⊕ null(T |range(T−λ1 IdV ) − λ2 IdV )⊕ range((T |range(T−λ1 IdV ) − λ2 IdV ))

= · · · ,

which eventually stabilizes to:

V = E(λ1, T )⊕ E(λ2, T1)⊕ · · ·E(λm, Tm−1), (1)

where Ti is the restriction of T to some T -invariant subspace. It is clear that E(λi, Ti−1) ⊆ E(λi, T ).
We claim that E(λi, T ) ⊆ E(λi, Ti−1), which is clear from (1).

(1) ⇒ (3): let BV be a basis of V such that M(T,BV ) = diag(λ1, · · · , λk), where diag(λ1, · · · , λk)
is the diagonal matrix with entries λ1, . . . , λk. Notice that the matrix corresponding to

∏m
i=1(T −λi)

is diag(
∏m

i=1(λ1 − λi), · · · ,
∏m

i=1(λ1 − λn)) which is 0, because each of the products
∏m

i=1(λj − λi)
vanish. Thus, pT (T ) = 0 is a multiple of the minimal polynomial. Since each of factors (x − λi)
appears only once, if the minimal polynomial q is not pT , then there exists j ∈ {1, . . . , k} such that
the j diagonal entry of q(T ) is non-zero, which implies that q(T ) ̸= 0, a contradiction.

(3) ⇒ (1): this is done in the textbook, see the proof of 5.62.

(3) ⇔ (4): is clear.

(3) ⇒ (5): assume that pT and p′T have a common zero α. Since p′T (z) =
∑m

j=1

∏
i ̸=j(z − λi) we

have:
m∑
j=1

∏
i ̸=j

(α− λi) = 0
∏

i ̸=j λi ̸=α

(α− λi) = 0,
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however, the last equation is a contradiction.

(5) ⇒ (3): since we are over C we know that pT (z) =
∏m

i=1(z − λi), where λi are the eigenvalues
of T . Any zero of pT is λj, but we notice that:

p′T (λj) =
m∑
j=1

∏
i ̸=j

(α− λi) =
∏
i ̸=j

(α− λi),

which is only non-zero if λj is not equal to any other λi.

(5) ⇒ (6): assume that q is a common factor, since we are over Z there exists α ∈ C such that
(z−α) is a common factor of pT and p′T , which implies that pT (α) = p′T (α) which is a contradiction
with (5).

(6) ⇒ (5): if α is such that pT (α) = p′T (α), then Lemma 28 in the Lecture notes imply that
pT = q1(z − α) and p′T = q2(z − α), for some q1, q2 ∈ Z[z], which contradicts (6).

2. Let V be a finite-dimensional vector space over C. Let E ⊆ L(V ) be a subset of linear operators
which commute, i.e. for any S, T ∈ E we have ST = TS.

(i) Prove that for any S, T ∈ E the subspaces null p(S) and range p(S) are invariant under T .

Solution. First we notice that for any polynomial p(z) ∈ C[z] we have

Tp(S) = T
m∑
i=0

aiS
i =

m∑
i=0

aiS
iT = p(S)T,

since TSi = SiT for every i ≥ 0.

Invariance of null p(S): let v ∈ null p(S), i.e., p(S)(v) = 0. This follows from:

p(S)(T (v)) = T (p(S)(v)) = T (0) = 0.

Invariance of range p(S): let v ∈ range p(S), i.e., there exists a vector u ∈ V such that
p(S)(u) = v. We need to show that T (v) ∈ range p(S). Again we compute:

T (v) = T (p(S)(u)) = p(S)(T (u)),

thus T (v) = p(S)(T (u)), i.e. T (v) ∈ range p(S).

(ii) Prove that there is a vector in V that is an eigenvector for every element of E .
Solution. Let T ∈ E, consider λ an eigenvalue of T , which exists by Proposition 4 in the
Lecture Notes, and E(λ, T ) the corresponding eigenspace. Let S ∈ E be any other element,
by (i) E(λ, T ) is invariant under S, thus we obtain S|E(λ,T ) : E(λ, T ) → E(λ, T ) has an
eigenvector v ∈ E(λ, T ) by Proposition 4 again. Notice that this implies that T (v) = λv and
S(v) = µS for some µ ∈ F. Let {T1, T2, . . .} = E be an order on E by proceeding as before we
obtain that there exist v ∈ E(λi, Ti) for all i ≥ 1 such that Ti(v) = λiv, i.e. v is an eigenvector
of all T ∈ E.

(iii) Prove that there is a basis of V with respect to which every element of E has an upper-
triangular form.

Solution. We proceed by induction on dimV = n. The case n = 1 is clear, since any 1 by 1
matrix is upper-triangular.

2



Assume the result holds for all complex vector spaces of dimension < n− 1. By (ii) let v1 be
a common eigenvector of all T ∈ E, then T (v1) ∈ Span {v1} for every T ∈ E. Let W ⊂ V be a
subspace such that W ⊕ Span {v1} = V . Let P : V → W be the projection onto W . For every
T ∈ E, let:

T̂ := P ◦ T |W : W → W.

Given any S, T ∈ E and w ∈ W we calculate:

ŜT̂ (w) = Ŝ(Tw − av1) = P (S(Tw − av1)) = P (S(T (w))) for some a ∈ F.

Similarly, we have:

T̂ Ŝ(w) = T̂ (Sw − bv1) = P (S(Tw − bv1)) = P (T (S(w))) for some b ∈ F.

That is ŜT̂ = T̂ Ŝ for every S, T ∈ E. By the inductive hypothesis there exists a basis BW =
{v2, . . . , vn} of W such that M(T̂ , BW ) is upper-triangular for every T ∈ E. Thus, M(BV , T )
where BV := {v1, . . . , vn} is upper-triangular.

3. Let V be a finite-dimensional vector space.

(i) Let T ∈ L(V ) be an invertible operator and BV = {v1, . . . , vn} is a basis such that M(BV , T )
is upper triangular with λ1, . . . , λn on the diagonal. Show that M(BV , T

−1) is also upper
triangular with 1

λ1
, . . . , 1

λn
on the diagonal.

Solution. Let T (vj) =
∑n

k=1 bkjvk, then bkj = 0 for k < j. Let T−1(vi) =
∑n

j=1 ajivj. Since

vi = T (T−1(vi)) =

n∑
j=1

ajiT (vj)

=

n∑
j=1

ajiλjvj +

n∑
j=1

aji

n∑
k=j+1

bkjvk.

By considering i = n, we have

vn = annλnvn +
n−1∑
j=1

ajnλjvj ,

which implies that ajn = 0 for 1 ≤ j < n and ann = λ−1
n . By considering i = n− 1 we obtain

aj,n−1 = 0 for 1 ≤ j < n− 1 and an−1,n−1 = b−1
n−1,n−1 and so on.

(ii) Give an example of T ∈ L(V ) and BV such that M(T,BV ) contains only 0’s in the diagonal
but T is invertible.

Solution. Consider T : C2 → C2 such that

M(T,BV ) =

(
0 1
1 0

)
,

where BV is the standard basis. We can directly check that T 2 = IdC2.

(iii) Give an example of T ∈ L(V ) and BV such that M(T,BV ) contains only non-zero elements
in the diagonal but T is not invertible.

Solution. Consider T : C2 → C2 such that

M(T,BV ) =

(
1 1
1 1

)
,

where BV is the standard basis. Since T ((1,−1)) = (0, 0), we have that T is not injective,
hence not invertible.
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