Math 2102: Homework 3 Solutions

- 1. Let $T: V \to V$ be an operator on a finite-dimensional complex vector space. Prove that the following are equivalent:
 - (1) T is diagonalizable (i.e. it satisfies Proposition 7 from the Lecture Notes);
 - (2) $V = \operatorname{null}(T \lambda \operatorname{Id}_V) \oplus \operatorname{range}(T \lambda \operatorname{Id}_V)$ for every $\lambda \in \mathbb{C}$;
 - (3) the minimal polynomial $p_T = \prod_{i=1}^m (z \lambda_i)$, where $\{\lambda_1, \ldots, \lambda_m\}$ are distinct;
 - (4) there does not exist $\lambda \in \mathbb{C}$ such that p_T is a multiple of $(z \lambda)^2$;
 - (5) p_T and p'_T have no zeros in common;
 - (6) the greatest common divisor of p_T and p'_T is the constant polynomial 1.

Solution. $(1) \Rightarrow (2)$: let $\{\lambda_1, \ldots, \lambda_m\}$ be all the eigenvalues of T. We claim that $\operatorname{null}(T - \lambda \operatorname{Id}_V) \cap \operatorname{range}(T - \lambda \operatorname{Id}_V) = \{0\}$. Let $v \in \operatorname{null}(T - \lambda \operatorname{Id}_V) \cap \operatorname{range}(T - \lambda \operatorname{Id}_V)$, then $v \in E(\lambda_i, T)$ for some $i \in \{1, \ldots, m\}$. We have:

$$(T - \lambda)(v) = (\lambda_i - \lambda)v = 0$$

since $v \neq 0$, we get $\lambda = \lambda_i$. But if $v = (T - \lambda)(u)$ by the same reasoning we obtain v = 0, which is a contradiction.

 $(2) \Rightarrow (1)$: by Proposition 4, there exist λ_1 an eigenvalue of T, i.e. $\operatorname{null}(T - \lambda_1 \operatorname{Id}_V) \neq \{0\}$. Let $T|_{\operatorname{range}(T-\lambda_1 \operatorname{Id}_V)}$: $\operatorname{range}(T - \lambda_1 \operatorname{Id}_V) \Rightarrow \operatorname{range}(T - \lambda_1 \operatorname{Id}_V)$, by Proposition 4, there exists λ_2 such that $E(\lambda_2, T|_{\operatorname{range}(T-\lambda_1 \operatorname{Id}_V)}) \neq \{0\}$. Proceeding like this we obtain a chain:

$$V = \operatorname{null}(T - \lambda_1 \operatorname{Id}_V) \oplus \operatorname{range}(T - \lambda_1 \operatorname{Id}_V)$$

= $\operatorname{null}(T - \lambda_1 \operatorname{Id}_V) \oplus \operatorname{null}(T|_{\operatorname{range}(T - \lambda_1 \operatorname{Id}_V)} - \lambda_2 \operatorname{Id}_V) \oplus \operatorname{range}((T|_{\operatorname{range}(T - \lambda_1 \operatorname{Id}_V)} - \lambda_2 \operatorname{Id}_V))$
= \cdots ,

which eventually stabilizes to:

$$V = E(\lambda_1, T) \oplus E(\lambda_2, T_1) \oplus \cdots E(\lambda_m, T_{m-1}), \tag{1}$$

where T_i is the restriction of T to some T-invariant subspace. It is clear that $E(\lambda_i, T_{i-1}) \subseteq E(\lambda_i, T)$. We claim that $E(\lambda_i, T) \subseteq E(\lambda_i, T_{i-1})$, which is clear from (1).

 $(1) \Rightarrow (3)$: let B_V be a basis of V such that $\mathcal{M}(T, B_V) = \operatorname{diag}(\lambda_1, \cdots, \lambda_k)$, where $\operatorname{diag}(\lambda_1, \cdots, \lambda_k)$ is the diagonal matrix with entries $\lambda_1, \ldots, \lambda_k$. Notice that the matrix corresponding to $\prod_{i=1}^m (T-\lambda_i)$ is $\operatorname{diag}(\prod_{i=1}^m (\lambda_1 - \lambda_i), \cdots, \prod_{i=1}^m (\lambda_1 - \lambda_n))$ which is 0, because each of the products $\prod_{i=1}^m (\lambda_j - \lambda_i)$ vanish. Thus, $p_T(T) = 0$ is a multiple of the minimal polynomial. Since each of factors $(x - \lambda_i)$ appears only once, if the minimal polynomial q is not p_T , then there exists $j \in \{1, \ldots, k\}$ such that the j diagonal entry of q(T) is non-zero, which implies that $q(T) \neq 0$, a contradiction.

- $(3) \Rightarrow (1)$: this is done in the textbook, see the proof of 5.62.
- $(3) \Leftrightarrow (4)$: is clear.

(3) \Rightarrow (5): assume that p_T and p'_T have a common zero α . Since $p'_T(z) = \sum_{j=1}^m \prod_{i \neq j} (z - \lambda_i)$ we have:

$$\sum_{j=1}^{m} \prod_{i \neq j} (\alpha - \lambda_i) = 0 \quad \prod_{i \neq j \ \lambda_i \neq \alpha} (\alpha - \lambda_i) = 0,$$

however, the last equation is a contradiction.

 $(5) \Rightarrow (3)$: since we are over \mathbb{C} we know that $p_T(z) = \prod_{i=1}^m (z - \lambda_i)$, where λ_i are the eigenvalues of T. Any zero of p_T is λ_j , but we notice that:

$$p'_T(\lambda_j) = \sum_{j=1}^m \prod_{i \neq j} (\alpha - \lambda_i) = \prod_{i \neq j} (\alpha - \lambda_i),$$

which is only non-zero if λ_i is not equal to any other λ_i .

 $(5) \Rightarrow (6)$: assume that q is a common factor, since we are over \mathbb{Z} there exists $\alpha \in \mathbb{C}$ such that $(z-\alpha)$ is a common factor of p_T and p'_T , which implies that $p_T(\alpha) = p'_T(\alpha)$ which is a contradiction with (5).

 $(6) \Rightarrow (5)$: if α is such that $p_T(\alpha) = p'_T(\alpha)$, then Lemma 28 in the Lecture notes imply that $p_T = q_1(z - \alpha)$ and $p'_T = q_2(z - \alpha)$, for some $q_1, q_2 \in \mathbb{Z}[z]$, which contradicts (6).

- 2. Let V be a finite-dimensional vector space over \mathbb{C} . Let $\mathcal{E} \subseteq \mathcal{L}(V)$ be a subset of linear operators which commute, i.e. for any $S, T \in \mathcal{E}$ we have ST = TS.
 - (i) Prove that for any S, T ∈ E the subspaces null p(S) and range p(S) are invariant under T.
 Solution. First we notice that for any polynomial p(z) ∈ C[z] we have

$$Tp(S) = T \sum_{i=0}^{m} a_i S^i = \sum_{i=0}^{m} a_i S^i T = p(S)T,$$

since $TS^i = S^i T$ for every $i \ge 0$.

Invariance of null p(S): let $v \in null p(S)$, i.e., p(S)(v) = 0. This follows from:

$$p(S)(T(v)) = T(p(S)(v)) = T(0) = 0.$$

Invariance of range p(S): let $v \in range p(S)$, i.e., there exists a vector $u \in V$ such that p(S)(u) = v. We need to show that $T(v) \in range p(S)$. Again we compute:

$$T(v) = T(p(S)(u)) = p(S)(T(u)),$$

thus T(v) = p(S)(T(u)), i.e. $T(v) \in \operatorname{range} p(S)$.

(ii) Prove that there is a vector in V that is an eigenvector for every element of \mathcal{E} .

Solution. Let $T \in \mathcal{E}$, consider λ an eigenvalue of T, which exists by Proposition 4 in the Lecture Notes, and $E(\lambda, T)$ the corresponding eigenspace. Let $S \in \mathcal{E}$ be any other element, by (i) $E(\lambda, T)$ is invariant under S, thus we obtain $S|_{E(\lambda,T)} : E(\lambda,T) \to E(\lambda,T)$ has an eigenvector $v \in E(\lambda,T)$ by Proposition 4 again. Notice that this implies that $T(v) = \lambda v$ and $S(v) = \mu S$ for some $\mu \in \mathbb{F}$. Let $\{T_1, T_2, \ldots\} = \mathcal{E}$ be an order on \mathcal{E} by proceeding as before we obtain that there exist $v \in E(\lambda_i, T_i)$ for all $i \geq 1$ such that $T_i(v) = \lambda_i v$, i.e. v is an eigenvector of all $T \in \mathcal{E}$.

(iii) Prove that there is a basis of V with respect to which every element of \mathcal{E} has an uppertriangular form.

Solution. We proceed by induction on dim V = n. The case n = 1 is clear, since any 1 by 1 matrix is upper-triangular.

Assume the result holds for all complex vector spaces of dimension < n - 1. By (ii) let v_1 be a common eigenvector of all $T \in \mathcal{E}$, then $T(v_1) \in \text{Span} \{v_1\}$ for every $T \in \mathcal{E}$. Let $W \subset V$ be a subspace such that $W \oplus \text{Span} \{v_1\} = V$. Let $P : V \to W$ be the projection onto W. For every $T \in \mathcal{E}$, let:

$$\hat{T} := P \circ T|_W : W \to W.$$

Given any $S, T \in \mathcal{E}$ and $w \in W$ we calculate:

$$\hat{ST}(w) = \hat{S}(Tw - av_1) = P(S(Tw - av_1)) = P(S(T(w))) \text{ for some } a \in \mathbb{F}.$$

Similarly, we have:

$$\hat{T}\hat{S}(w) = \hat{T}(Sw - bv_1) = P(S(Tw - bv_1)) = P(T(S(w))) \text{ for some } b \in \mathbb{F}.$$

That is $\hat{S}\hat{T} = \hat{T}\hat{S}$ for every $S, T \in \mathcal{E}$. By the inductive hypothesis there exists a basis $B_W = \{v_2, \ldots, v_n\}$ of W such that $\mathcal{M}(\hat{T}, B_W)$ is upper-triangular for every $T \in \mathcal{E}$. Thus, $\mathcal{M}(B_V, T)$ where $B_V := \{v_1, \ldots, v_n\}$ is upper-triangular.

- 3. Let V be a finite-dimensional vector space.
 - (i) Let $T \in \mathcal{L}(V)$ be an invertible operator and $B_V = \{v_1, \ldots, v_n\}$ is a basis such that $\mathcal{M}(B_V, T)$ is upper triangular with $\lambda_1, \ldots, \lambda_n$ on the diagonal. Show that $\mathcal{M}(B_V, T^{-1})$ is also upper triangular with $\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_n}$ on the diagonal.

Solution. Let $T(v_j) = \sum_{k=1}^n b_{kj} v_k$, then $b_{kj} = 0$ for k < j. Let $T^{-1}(v_i) = \sum_{j=1}^n a_{jj} v_j$. Since

$$v_i = T(T^{-1}(v_i)) = \sum_{j=1}^n a_{ji} T(v_j)$$
$$= \sum_{j=1}^n a_{ji} \lambda_j v_j + \sum_{j=1}^n a_{ji} \sum_{k=j+1}^n b_{kj} v_k.$$

By considering i = n, we have

$$v_n = a_{nn}\lambda_n v_n + \sum_{j=1}^{n-1} a_{jn}\lambda_j v_j,$$

which implies that $a_{jn} = 0$ for $1 \le j < n$ and $a_{nn} = \lambda_n^{-1}$. By considering i = n - 1 we obtain $a_{j,n-1} = 0$ for $1 \le j < n - 1$ and $a_{n-1,n-1} = b_{n-1,n-1}^{-1}$ and so on.

(ii) Give an example of $T \in \mathcal{L}(V)$ and B_V such that $\mathcal{M}(T, B_V)$ contains only 0's in the diagonal but T is invertible.

Solution. Consider $T : \mathbb{C}^2 \to \mathbb{C}^2$ such that

$$\mathcal{M}(T, B_V) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

where B_V is the standard basis. We can directly check that $T^2 = \mathrm{Id}_{\mathbb{C}^2}$.

(iii) Give an example of $T \in \mathcal{L}(V)$ and B_V such that $\mathcal{M}(T, B_V)$ contains only non-zero elements in the diagonal but T is not invertible.

Solution. Consider $T : \mathbb{C}^2 \to \mathbb{C}^2$ such that

$$\mathcal{M}(T, B_V) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$

where B_V is the standard basis. Since T((1, -1)) = (0, 0), we have that T is not injective, hence not invertible.