Math 2102: Homework 2
Due on: Feb. 26, 2024 at 11:59 pm.

All assignments must be submitted via Moodle. Precise and adequate explanations should be given to
each problem. Exercises marked with Extra might be more challenging or a digression, so they won’t
be graded.

1. Let U C V be a subspace and denote by 7 : V — V/U the quotient map. Let n* € L((V/U)*, V*)
denote the associated dual linear map.

(i)

(iii)

Show that 7* is injective.

Solution. Let A € (V/U)* we have 7*(\) = Ao € V*. Assume that 7*(\) = 0, that is for
every v € V- we have Ao w(v) = 0. Suppose that A # 0, then there exists x € V/U such that
Az) # 0. Notice m : V. — V/U is surjective, i.e. x = T + U for some T € V by definition;
thus m(z) = x. This gives that 7 (\)(z) = AN(7(Z) = A(z) = 0, which is a contradiction. Thus
A =0, i.e. kerm* =0, which by Lecture Notes Lemma 11, implies that 7 is injective.

Notice that in the case where V is finite-dimensional we proved in Lecture Notes Lemma 25
that ™ 1is injective if and only if ™ is surjective, which was proved in the paragraph above. So
in this case the proof is simpler.

Show that range 7* = U°.

Solution. Let A € range ™ then A = 7*(u) for some p € (V/U)*. Notice that if u € U then
m(u) = 0 (here this means Oy ), since p is linear we have AN(u) = 7*(u)(u) = p(m(u)) = 0
for every u € U, thus range A C U°.

Now assume that A € U, thus we have X : V. — F such that the restriction of A to U vanishes.
By Lemma 20, there exists an unique linear map o : V/U — F, i.e. o € (V/U)*, such that
A=com=7*c). Thus, U° C (V/U)*.

Conclude that 7* is an isomorphism between (V/U)* and U°.
Solution. By Corollary 8 (iv), we have that #* : (V/U)* — V* induces:

™ (V/U)*/null pi* — V*

with (V/U)*/ null pi* ~ range*. By (i) we have null7w* = 0, which implies that ™ = 7*, by
(ii) we have that range* = UY. Thus, we conclude that (V/U)* ~ U°.

2. Consider V = C((z)) the set of Laurent series, i.e. a € C((z)) is given by a series a(z) = Y, ., a;a’,
where a; € C, and such that there exists N € Z such that a,, =0 for all n < N.

(i)

Check that V' is a vector space. Is the set {x"},cz a basis of V7
Solution. Notice that as a set one has a bijection o : C((z)) = CZ given by
@(Z a;z') : Z — C, @(Z a;z")(n) = ap.
€L 1EZL

The addition and scalar multiplication on C((x)) are defined exactly as the addition and scalar
multiplication on C%. This shows that C((z)) is a vector space over C. The set {x"}ncz is
not a basis, since for example the element Y~ 2" € C((z)) can not be written as a finite
linear combination of the vectors in {x"Ypez.



(ii) Given any g € V' consider the map Ly : V' — C given by
Ly(f) = Res(gf) := coefficient of 2™ in g(z)f(z),

Prove that L, is a well-defined linear map.

Solution. Let g =, cia’ and consider f =3,., a;z’ in V. We have:

9f =Y > cija;)a’,

i€Z jET.

1€EZ

where we notice that the sum ZjeZ(j + 1)ci—ja; is finite since for j < 0 we have a; =0 and
for j >0 we have that c;,_; = 0. Thus the expression gf is well-defined and

Ly(f) =) ci-jaj.

JEZ.

Consider f =3 ,cpa; and h =3, ., b; in'V and d € C we have:

Lo(f +dh) = cij(aj +dbj11)

=/
= E ci_jaj—i-dg Ci—jbj
JEZ JEZ

= Ly(f)+dLg(h).

(ili) Consider ¢ : V' — V* given by ¢(g) := Ly. Prove that ¢ is an isomorphism.

Solution. Consider f =3 .., a; and h =), b; in V where ay, # by, for some k € Z. And
assume that Ly = Ly. Then if we consider:

L) = Ly(z7%) = ax = by,

which is a contradiction. This proves that ¢ is injective.
Let A: V — C be a linear functional, define:

c—i_1:= Nz') for everyi € Z.

Notice that for i > 0 we have c_;_1 = 0, since A\(z') = 0 for i > 0, otherwise A >0 7t) =
Zz‘zo c—i would not be well-defined. Thus, we can define g == > ;.5 cixt. We claim that
Ly = ). Indeed, for any z* € V we have:

Ly(z%) = Res(z crtR) = c_p_1 = A(zP).
1E€EL

Thus, for an arbitrary f =3, apz® we have

Lg(f) = A(f).
This proves that ¢ is surjective.

(iv) Let C[[z]] C C((z)) be the subset of Taylor series, i.e. a € C[[z]] if a = }_, 5y ana" for some
a; € C and let C[z~!] € C((x)) denote the subset of a € C((x)) such that a = D <0 @nT™,
with a,, = 0 for m < 0. Prove that C[[z]] and C[z~!] are subspaces.



(v)

Determine the range of ¢ restricted to C[[z]] and C[z~1].
Solution. Let ¥ : V* — V be defined by U(X\) = >, .5 Ma™""1)a?, which is well-defined by
the Solution to (iii). Notice that ¢ o ¢ = Idy+ and Idy = ¥ o p. Thus, A € o(Cl[z]]) if
P(A) € Cllz]], i.e. ‘

AMz')y=c_i-1=0for —i—1<0, 1> -1,

i.e. o(C[[x]]) = (z71C[[z]])° where x~1C[[x]] C C((x)) is the subspace of Laurent series such
that a; = 0 for i < —2. Similarly, we have X € o(Clz™1]) if ¥()\) € Clz™1], i.e.
Mz =c i1 =0for —i—1>0, i< —1,

27 1C[z™ Y)Y, where x~1C[x~1] C is the subspace of Laurent series such that

(Extra) Conclude that C[[z]] ~ C[z]* and that C[z]* ~ C[[x]].

Solution. Notice that (v) gives that C[[x]] ~ (x~'C[[x]])°. By Lemma 23 (i) in the Lecture
Notes we have:
(z71C[[2]])° = null ¥,

where 1 : x*C[[z]] — C((x)) is the canonical inclusion. Now we claim that null?* ~ C|[x]*.
Indeed, consider ¢ : Clx]* — C((x))* given by
AMax™72) ifi < =2,

0 else.

CN) (") = {

It is easy to check that ((C[x]*) = nulle*. The argument for Clx]* ~ C[[z]] is similar, using
the other result in (v).

3. Let T': V — W be a linear operator between real vector spaces. We define:

(i)

Tc : Ve — W, T(u+iv) :=T(u) + T (v).

Prove that A is an eigenvalue of T if and only if A is an eigenvalue of T¢.

Solution. For this we need to assume that A € R.
Let X\ be an eigenvalue of T with eigenvector v € V', that T(v) = Av and v # 0. Consider
Te(v+iv) = T(v) +iT(v) = A +idv = Mo +iv). So v+iv is an eigenvector of Te with
eigenvalue \.
Now consider v € Vi such that Tc(v) = Av. We write as v = v, +iv; for v,,v; € V. Then we
have:

Aoy +iv;) = Te(vr +ivy) = T(vy) + i1 (v;).

The real part gives v, = T'(v,) and the imaginary part gives Av; = T(v;). Since either v, or
v; 1S non-zero, otherwise v is zero, we have that either v, or v; is an eigenvector of T with
eigenvalue \.

Prove that \ is an eigenvalue of T¢ if and only if X is an eigenvalue of T¢.

Solution. Now consider v € Vi such that Te(v) = Av. We write as v = v, +iv; for vy, v; € V.
Let A = (a + ib) then we have:

(a + ib) (v, + 1v;) = (avy — bvy) + i(bv, + avy) = T'(vy) + T (v;).



By equating the real and imaginary part we have: T'(v,) = (av, —bv;) and T'(v;) = (bv, + av;).
Now consider v' := v, — iv;, then we have:

Tc(vy —iv;) = T(vy) —iT(v;)
= (av, — bv;) — i(bv, + av;)
= (a —ib)(vy — iv;).

Thus v, — iv; is an eigenvector with eigenvalue X = a —ib. The other direction has exactly the
same proof.

4. Let V be a finite-dimensional vector space and consider 7' € £(V') and U C V a subspace invariant
under 7. The quotient operator T /U € L(V/U) is defined by:

(i)

(iii)

(iv)

T/U:V/U = V/U — T/Uw+U):=T({)+U.

Check that T/U is well-defined.

Solution. Let v+ U =o' 4+ U in V/U we need to check that the assignments T /U(v+U) :=
T(w)+U and T/U(W' +U) =T (") + U produce the same answer. Indeed, let uw € U such that
v—v = u, then we have T'(v) — T(v') =T(v—v") = T(u) € U since U is invariant under T.
Thus, T(v) +U =T (") + U.

One also needs to check that T /U is linear. Consider a € F and u+U,u'+U € V/U then we
have:

T/U(a(u+U)+u'+U) = T(au+u")+U = aT(u)+T (W) +U = o(T/U(u)+U)+(T/U (u')+U).

Show that each eigenvalue of T'/U is an eigenvalue of T'.

Solution. Let A\ be an eigenvalue of T /U, then there exist x € V/U such that x # 0 and
T/U(z) = Ax. Consider W CV such that W & U =V, which exists by Lecture Notes Lemma
5, since V' is finite-dimensional.
There exists an unique w € W such that w+U = x. Indeed, assume that there are w,w' € W
such that w +U = w' + U, then w —w' € U, since UNW = {0}, we get w = w'. Now we
compute:

T(w)+U=T/U(w+U) = XNw+U),
which implies that T'(w) — A(w) € U.
Let X := Span(w) & U. We just showed that (T — \1dx)(X) C U C X. Since dimU =
dim X — 1 we have that the linear map T|y — Aldx is not surjective, since X is finite-
dimensional T|y — ANldx is also not injective. Thus, there exist v € X C V such that
T(v) — Av =0, as we needed to prove.

Prove that the minimal polynomial of T" is a multiple of the minimal polynomial of 7'/U.

Solution. Let p be the minimal polynomial of T on V. Notice that U is invariant under p(T)
and that p(T)/U = p(T/U). Indeed, it is enough to check that

T"/U(v+U) = T"(v) + U

for each n > 1. Thus, p(T/U) = 0, since p(T) = 0. So by Lemma 33 we have that p is a
multiple of the minimal polynomial of T/U as we needed to prove.

Prove that pp/ypr is a multiple of pr, here pg is the minimal polynomial of the operator S.



Solution. Let r be the minimal polynomial of T|;; : U — U. Let q be the minimal polynomial
of T/U, then for every v € V. we have

o(T/U)(v+U) = q(T)(v) +U = U. (1)
Then we claim that r o g(T) = 0. Indeed, let v € V' then we have:
r(T) 0 g(T)(v) = r(T)(v) = 0

since by (1) q(T)(v) € U and r(T) =0 on U.



