
Math 2102: Homework 2
Due on: Feb. 26, 2024 at 11:59 pm.

All assignments must be submitted via Moodle. Precise and adequate explanations should be given to
each problem. Exercises marked with Extra might be more challenging or a digression, so they won’t
be graded.

1. Let U ⊆ V be a subspace and denote by π : V → V/U the quotient map. Let π∗ ∈ L((V/U)∗, V ∗)
denote the associated dual linear map.

(i) Show that π∗ is injective.

Solution. Let λ ∈ (V/U)∗ we have π∗(λ) = λ ◦ π ∈ V ∗. Assume that π∗(λ) = 0, that is for
every v ∈ V we have λ ◦ π(v) = 0. Suppose that λ ̸= 0, then there exists x ∈ V/U such that
λ(x) ̸= 0. Notice π : V → V/U is surjective, i.e. x = x̃ + U for some x̃ ∈ V by definition;
thus π(x̃) = x. This gives that π∗(λ)(x̃) = λ(π(x̃) = λ(x) = 0, which is a contradiction. Thus
λ = 0, i.e. kerπ∗ = 0, which by Lecture Notes Lemma 11, implies that π∗ is injective.

Notice that in the case where V is finite-dimensional we proved in Lecture Notes Lemma 25
that π∗ is injective if and only if π is surjective, which was proved in the paragraph above. So
in this case the proof is simpler.

(ii) Show that rangeπ∗ = U0.

Solution. Let λ ∈ rangeπ∗ then λ = π∗(µ) for some µ ∈ (V/U)∗. Notice that if u ∈ U then
π(u) = 0 (here this means 0V/U ), since µ is linear we have λ(u) = π∗(µ)(u) = µ(π(u)) = 0
for every u ∈ U , thus rangeλ ⊆ U0.

Now assume that λ ∈ U0, thus we have λ : V → F such that the restriction of λ to U vanishes.
By Lemma 20, there exists an unique linear map σ : V/U → F, i.e. σ ∈ (V/U)∗, such that
λ = σ ◦ π = π∗(σ). Thus, U0 ⊆ (V/U)∗.

(iii) Conclude that π∗ is an isomorphism between (V/U)∗ and U0.

Solution. By Corollary 8 (iv), we have that π∗ : (V/U)∗ → V ∗ induces:

π̄∗ : (V/U)∗/ null pi∗ → V ∗

with (V/U)∗/ null pi∗ ≃ range π̄∗. By (i) we have nullπ∗ = 0, which implies that π̄∗ = π∗, by
(ii) we have that rangeπ∗ = U0. Thus, we conclude that (V/U)∗ ≃ U0.

2. Consider V = C((x)) the set of Laurent series, i.e. a ∈ C((x)) is given by a series a(x) =
∑

i∈Z aix
i,

where ai ∈ C, and such that there exists N ∈ Z such that an = 0 for all n < N .

(i) Check that V is a vector space. Is the set {xn}n∈Z a basis of V ?

Solution. Notice that as a set one has a bijection φ : C((x)) ≃→ CZ given by

φ(
∑
i∈Z

aix
i) : Z → C, φ(

∑
i∈Z

aix
i)(n) = an.

The addition and scalar multiplication on C((x)) are defined exactly as the addition and scalar
multiplication on CZ. This shows that C((x)) is a vector space over C. The set {xn}n∈Z is
not a basis, since for example the element

∑
i≥0 x

i ∈ C((x)) can not be written as a finite
linear combination of the vectors in {xn}n∈Z.
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(ii) Given any g ∈ V consider the map Lg : V → C given by

Lg(f) = Res(gf) := coefficient of x−1 in g(x)f(x),

Prove that Lg is a well-defined linear map.

Solution. Let g =
∑

i∈Z cix
i and consider f =

∑
i∈Z aix

i in V . We have:

gf =
∑
i∈Z

(
∑
j∈Z

ci−jaj)x
i,

where we notice that the sum
∑

j∈Z(j + 1)ci−jaj is finite since for j ≪ 0 we have aj = 0 and
for j ≫ 0 we have that ci−j = 0. Thus the expression gf is well-defined and

Lg(f) =
∑
j∈Z

ci−jaj .

Consider f =
∑

i∈Z ai and h =
∑

i∈Z bi in V and d ∈ C we have:

Lg(f + dh) =
∑
j∈Z

ci−j(aj + dbj+1)

=
∑
j∈Z

ci−jaj + d
∑
j∈Z

ci−jbj

= Lg(f) + dLg(h).

(iii) Consider φ : V → V ∗ given by φ(g) := Lg. Prove that φ is an isomorphism.

Solution. Consider f =
∑

i∈Z ai and h =
∑

i∈Z bi in V where ak ̸= bk for some k ∈ Z. And
assume that Lf = Lh. Then if we consider:

Lf (x
−k) = Lh(x

−k) ⇒ ak = bk,

which is a contradiction. This proves that φ is injective.

Let λ : V → C be a linear functional, define:

c−i−1 := λ(xi) for every i ∈ Z.

Notice that for i ≫ 0 we have c−i−1 = 0, since λ(xi) = 0 for i ≫ 0, otherwise λ(
∑

i≥0 x
i) =∑

i≥0 c−i would not be well-defined. Thus, we can define g :=
∑

i∈Z cix
i. We claim that

Lg = λ. Indeed, for any xk ∈ V we have:

Lg(x
k) = Res(

∑
i∈Z

cix
i+k) = c−k−1 = λ(xk).

Thus, for an arbitrary f =
∑

k∈Z akx
k we have

Lg(f) = λ(f).

This proves that φ is surjective.

(iv) Let C[[x]] ⊂ C((x)) be the subset of Taylor series, i.e. a ∈ C[[x]] if a =
∑

n≥0 anx
n for some

ai ∈ C and let C[x−1] ⊂ C((x)) denote the subset of a ∈ C((x)) such that a =
∑

n≤0 anx
n,

with am = 0 for m≪ 0. Prove that C[[x]] and C[x−1] are subspaces.
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(v) Determine the range of φ restricted to C[[x]] and C[x−1].

Solution. Let Ψ : V ∗ → V be defined by Ψ(λ) =
∑

i∈Z λ(x
−i−1)xi, which is well-defined by

the Solution to (iii). Notice that φ ◦ ψ = IdV ∗ and IdV = ψ ◦ φ. Thus, λ ∈ φ(C[[x]]) if
ψ(λ) ∈ C[[x]], i.e.

λ(xi) = c−i−1 = 0 for − i− 1 ≤ 0, i ≥ −1,

i.e. φ(C[[x]]) = (x−1C[[x]])0 where x−1C[[x]] ⊂ C((x)) is the subspace of Laurent series such
that ai = 0 for i ≤ −2. Similarly, we have λ ∈ φ(C[x−1]) if ψ(λ) ∈ C[x−1], i.e.

λ(xi) = c−i−1 = 0 for − i− 1 ≥ 0, i ≤ −1,

i.e. φ(C[x]) = (x−1C[x−1])0, where x−1C[x−1] ⊂ is the subspace of Laurent series such that
ai = 0 for i ≥ 0.

(vi) (Extra) Conclude that C[[x]] ≃ C[x]∗ and that C[x]∗ ≃ C[[x]].
Solution. Notice that (v) gives that C[[x]] ≃ (x−1C[[x]])0. By Lemma 23 (i) in the Lecture
Notes we have:

(x−1C[[x]])0 = null ı∗,

where ı : x−1C[[x]] → C((x)) is the canonical inclusion. Now we claim that null ı∗ ≃ C[x]∗.
Indeed, consider ζ : C[x]∗ → C((x))∗ given by

ζ(λ)(xi) :=

{
λ(x−i−2) if i ≤ −2,

0 else.

It is easy to check that ζ(C[x]∗) = null ı∗. The argument for C[x]∗ ≃ C[[x]] is similar, using
the other result in (v).

3. Let T : V →W be a linear operator between real vector spaces. We define:

TC : VC →WC, T (u+ iv) := T (u) + iT (v).

(i) Prove that λ is an eigenvalue of T if and only if λ is an eigenvalue of TC.

Solution. For this we need to assume that λ ∈ R.
Let λ be an eigenvalue of T with eigenvector v ∈ V , that T (v) = λv and v ̸= 0. Consider
TC(v + iv) = T (v) + iT (v) = λv + iλv = λ(v + iv). So v + iv is an eigenvector of TC with
eigenvalue λ.

Now consider v ∈ VC such that TC(v) = λv. We write as v = vr + ivi for vr, vi ∈ V . Then we
have:

λ(vr + ivi) = TC(vr + ivi) = T (vr) + iT (vi).

The real part gives λvr = T (vr) and the imaginary part gives λvi = T (vi). Since either vr or
vi is non-zero, otherwise v is zero, we have that either vr or vi is an eigenvector of T with
eigenvalue λ.

(ii) Prove that λ is an eigenvalue of TC if and only if λ is an eigenvalue of TC.

Solution. Now consider v ∈ VC such that TC(v) = λv. We write as v = vr+ivi for vr, vi ∈ V .
Let λ = (a+ ib) then we have:

(a+ ib)(vr + ivi) = (avr − bvi) + i(bvr + avi) = T (vr) + iT (vi).
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By equating the real and imaginary part we have: T (vr) = (avr− bvi) and T (vi) = (bvr+avi).
Now consider v′ := vr − ivi, then we have:

TC(vr − ivi) = T (vr)− iT (vi)

= (avr − bvi)− i(bvr + avi)

= (a− ib)(vr − ivi).

Thus vr − ivi is an eigenvector with eigenvalue λ = a− ib. The other direction has exactly the
same proof.

4. Let V be a finite-dimensional vector space and consider T ∈ L(V ) and U ⊆ V a subspace invariant
under T . The quotient operator T/U ∈ L(V/U) is defined by:

T/U : V/U → V/U, T/U(v + U) := T (v) + U.

(i) Check that T/U is well-defined.

Solution. Let v + U = v′ + U in V/U we need to check that the assignments T/U(v + U) :=
T (v)+U and T/U(v′+U) = T (v′)+U produce the same answer. Indeed, let u ∈ U such that
v − v′ = u, then we have T (v)− T (v′) = T (v − v′) = T (u) ∈ U since U is invariant under T .
Thus, T (v) + U = T (v′) + U .

One also needs to check that T/U is linear. Consider a ∈ F and u+U, u′ +U ∈ V/U then we
have:

T/U(a(u+U)+u′+U) = T (au+u′)+U = aT (u)+T (u′)+U = a(T/U(u)+U)+(T/U(u′)+U).

(ii) Show that each eigenvalue of T/U is an eigenvalue of T .

Solution. Let λ be an eigenvalue of T/U , then there exist x ∈ V/U such that x ̸= 0 and
T/U(x) = λx. Consider W ⊆ V such that W ⊕U = V , which exists by Lecture Notes Lemma
5, since V is finite-dimensional.

There exists an unique w ∈W such that w+U = x. Indeed, assume that there are w,w′ ∈W
such that w + U = w′ + U , then w − w′ ∈ U , since U ∩W = {0}, we get w = w′. Now we
compute:

T (w) + U = T/U(w + U) = λ(w + U),

which implies that T (w)− λ(w) ∈ U .

Let X := Span (w) ⊕ U . We just showed that (T − λ IdX)(X) ⊆ U ⊆ X. Since dimU =
dimX − 1 we have that the linear map T |X − λ IdX is not surjective, since X is finite-
dimensional T |X − λ IdX is also not injective. Thus, there exist v ∈ X ⊆ V such that
T (v)− λv = 0, as we needed to prove.

(iii) Prove that the minimal polynomial of T is a multiple of the minimal polynomial of T/U .

Solution. Let p be the minimal polynomial of T on V . Notice that U is invariant under p(T )
and that p(T )/U = p(T/U). Indeed, it is enough to check that

Tn/U(v + U) = Tn(v) + U

for each n ≥ 1. Thus, p(T/U) = 0, since p(T ) = 0. So by Lemma 33 we have that p is a
multiple of the minimal polynomial of T/U as we needed to prove.

(iv) Prove that pT/UpT |U is a multiple of pT , here pS is the minimal polynomial of the operator S.
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Solution. Let r be the minimal polynomial of T |U : U → U . Let q be the minimal polynomial
of T/U , then for every v ∈ V we have

q(T/U)(v + U) = q(T )(v) + U = U. (1)

Then we claim that r ◦ q(T ) = 0. Indeed, let v ∈ V then we have:

r(T ) ◦ q(T )(v) = r(T )(v) = 0

since by (1) q(T )(v) ∈ U and r(T ) = 0 on U .
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