Math 2102: Homework 2 Due on: Feb. 26, 2024 at 11:59 pm.

All assignments must be submitted via Moodle. Precise and adequate explanations should be given to each problem. Exercises marked with Extra might be more challenging or a digression, so they won't be graded.

- 1. Let $U \subseteq V$ be a subspace and denote by $\pi: V \to V/U$ the quotient map. Let $\pi^* \in \mathcal{L}((V/U)^*, V^*)$ denote the associated dual linear map.
 - (i) Show that π^* is injective.

Solution. Let $\lambda \in (V/U)^*$ we have $\pi^*(\lambda) = \lambda \circ \pi \in V^*$. Assume that $\pi^*(\lambda) = 0$, that is for every $v \in V$ we have $\lambda \circ \pi(v) = 0$. Suppose that $\lambda \neq 0$, then there exists $x \in V/U$ such that $\lambda(x) \neq 0$. Notice $\pi : V \to V/U$ is surjective, i.e. $x = \tilde{x} + U$ for some $\tilde{x} \in V$ by definition; thus $\pi(\tilde{x}) = x$. This gives that $\pi^*(\lambda)(\tilde{x}) = \lambda(\pi(\tilde{x}) = \lambda(x) = 0$, which is a contradiction. Thus $\lambda = 0$, i.e. ker $\pi^* = 0$, which by Lecture Notes Lemma 11, implies that π^* is injective. Notice that in the case where V is finite-dimensional we proved in Lecture Notes Lemma 25 that π^* is injective if and only if π is surjective, which was proved in the paragraph above. So

(ii) Show that range $\pi^* = U^0$.

in this case the proof is simpler.

Solution. Let $\lambda \in \operatorname{range} \pi^*$ then $\lambda = \pi^*(\mu)$ for some $\mu \in (V/U)^*$. Notice that if $u \in U$ then $\pi(u) = 0$ (here this means $0_{V/U}$), since μ is linear we have $\lambda(u) = \pi^*(\mu)(u) = \mu(\pi(u)) = 0$ for every $u \in U$, thus range $\lambda \subseteq U^0$.

Now assume that $\lambda \in U^0$, thus we have $\lambda : V \to \mathbb{F}$ such that the restriction of λ to U vanishes. By Lemma 20, there exists an unique linear map $\sigma : V/U \to \mathbb{F}$, i.e. $\sigma \in (V/U)^*$, such that $\lambda = \sigma \circ \pi = \pi^*(\sigma)$. Thus, $U^0 \subseteq (V/U)^*$.

(iii) Conclude that π^* is an isomorphism between $(V/U)^*$ and U^0 .

Solution. By Corollary 8 (iv), we have that $\pi^* : (V/U)^* \to V^*$ induces:

$$\bar{\pi^*}: (V/U)^*/ \operatorname{null} pi^* \to V^*$$

with $(V/U)^*/\operatorname{null} pi^* \simeq \operatorname{range} \pi^*$. By (i) we have $\operatorname{null} \pi^* = 0$, which implies that $\pi^* = \pi^*$, by (i) we have that $\operatorname{range} \pi^* = U^0$. Thus, we conclude that $(V/U)^* \simeq U^0$.

- 2. Consider $V = \mathbb{C}((x))$ the set of Laurent series, i.e. $a \in \mathbb{C}((x))$ is given by a series $a(x) = \sum_{i \in \mathbb{Z}} a_i x^i$, where $a_i \in \mathbb{C}$, and such that there exists $N \in \mathbb{Z}$ such that $a_n = 0$ for all n < N.
 - (i) Check that V is a vector space. Is the set $\{x^n\}_{n\in\mathbb{Z}}$ a basis of V?

Solution. Notice that as a set one has a bijection $\varphi : \mathbb{C}((x)) \xrightarrow{\simeq} \mathbb{C}^{\mathbb{Z}}$ given by

$$\varphi(\sum_{i\in\mathbb{Z}}a_ix^i):\mathbb{Z}\to\mathbb{C},\qquad \varphi(\sum_{i\in\mathbb{Z}}a_ix^i)(n)=a_n.$$

The addition and scalar multiplication on $\mathbb{C}((x))$ are defined exactly as the addition and scalar multiplication on $\mathbb{C}^{\mathbb{Z}}$. This shows that $\mathbb{C}((x))$ is a vector space over \mathbb{C} . The set $\{x^n\}_{n\in\mathbb{Z}}$ is not a basis, since for example the element $\sum_{i\geq 0} x^i \in \mathbb{C}((x))$ can not be written as a finite linear combination of the vectors in $\{x^n\}_{n\in\mathbb{Z}}$.

(ii) Given any $g \in V$ consider the map $L_g: V \to \mathbb{C}$ given by

$$L_g(f) = \operatorname{Res}(gf) := \operatorname{coefficient} \operatorname{of} x^{-1} \operatorname{in} g(x)f(x),$$

Prove that L_g is a well-defined linear map.

Solution. Let $g = \sum_{i \in \mathbb{Z}} c_i x^i$ and consider $f = \sum_{i \in \mathbb{Z}} a_i x^i$ in V. We have:

$$gf = \sum_{i \in \mathbb{Z}} (\sum_{j \in \mathbb{Z}} c_{i-j} a_j) x^i$$

where we notice that the sum $\sum_{j \in \mathbb{Z}} (j+1)c_{i-j}a_j$ is finite since for $j \ll 0$ we have $a_j = 0$ and for $j \gg 0$ we have that $c_{i-j} = 0$. Thus the expression gf is well-defined and

$$L_g(f) = \sum_{j \in \mathbb{Z}} c_{i-j} a_j.$$

Consider $f = \sum_{i \in \mathbb{Z}} a_i$ and $h = \sum_{i \in \mathbb{Z}} b_i$ in V and $d \in \mathbb{C}$ we have:

$$L_g(f + dh) = \sum_{j \in \mathbb{Z}} c_{i-j}(a_j + db_{j+1})$$
$$= \sum_{j \in \mathbb{Z}} c_{i-j}a_j + d\sum_{j \in \mathbb{Z}} c_{i-j}b_j$$
$$= L_g(f) + dL_g(h).$$

(iii) Consider $\varphi: V \to V^*$ given by $\varphi(g) := L_q$. Prove that φ is an isomorphism.

Solution. Consider $f = \sum_{i \in \mathbb{Z}} a_i$ and $h = \sum_{i \in \mathbb{Z}} b_i$ in V where $a_k \neq b_k$ for some $k \in \mathbb{Z}$. And assume that $L_f = L_h$. Then if we consider:

$$L_f(x^{-k}) = L_h(x^{-k}) \Rightarrow a_k = b_k,$$

which is a contradiction. This proves that φ is injective. Let $\lambda : V \to \mathbb{C}$ be a linear functional, define:

$$c_{-i-1} := \lambda(x^i)$$
 for every $i \in \mathbb{Z}$.

Notice that for $i \gg 0$ we have $c_{-i-1} = 0$, since $\lambda(x^i) = 0$ for $i \gg 0$, otherwise $\lambda(\sum_{i\geq 0} x^i) = \sum_{i\geq 0} c_{-i}$ would not be well-defined. Thus, we can define $g := \sum_{i\in\mathbb{Z}} c_i x^i$. We claim that $L_g = \lambda$. Indeed, for any $x^k \in V$ we have:

$$L_g(x^k) = \operatorname{Res}(\sum_{i \in \mathbb{Z}} c_i x^{i+k}) = c_{-k-1} = \lambda(x^k).$$

Thus, for an arbitrary $f = \sum_{k \in \mathbb{Z}} a_k x^k$ we have

$$L_g(f) = \lambda(f)$$

This proves that φ is surjective.

(iv) Let $\mathbb{C}[[x]] \subset \mathbb{C}((x))$ be the subset of Taylor series, i.e. $a \in \mathbb{C}[[x]]$ if $a = \sum_{n \ge 0} a_n x^n$ for some $a_i \in \mathbb{C}$ and let $\mathbb{C}[x^{-1}] \subset \mathbb{C}((x))$ denote the subset of $a \in \mathbb{C}((x))$ such that $a = \sum_{n \le 0} a_n x^n$, with $a_m = 0$ for $m \ll 0$. Prove that $\mathbb{C}[[x]]$ and $\mathbb{C}[x^{-1}]$ are subspaces.

(v) Determine the range of φ restricted to $\mathbb{C}[[x]]$ and $\mathbb{C}[x^{-1}]$.

Solution. Let $\Psi: V^* \to V$ be defined by $\Psi(\lambda) = \sum_{i \in \mathbb{Z}} \lambda(x^{-i-1})x^i$, which is well-defined by the Solution to (iii). Notice that $\varphi \circ \psi = \operatorname{Id}_{V^*}$ and $\operatorname{Id}_V = \psi \circ \varphi$. Thus, $\lambda \in \varphi(\mathbb{C}[[x]])$ if $\psi(\lambda) \in \mathbb{C}[[x]]$, i.e.

 $\lambda(x^i) = c_{-i-1} = 0 \text{ for } -i - 1 \le 0, \ i \ge -1,$

i.e. $\varphi(\mathbb{C}[[x]]) = (x^{-1}\mathbb{C}[[x]])^0$ where $x^{-1}\mathbb{C}[[x]] \subset \mathbb{C}((x))$ is the subspace of Laurent series such that $a_i = 0$ for $i \leq -2$. Similarly, we have $\lambda \in \varphi(\mathbb{C}[x^{-1}])$ if $\psi(\lambda) \in \mathbb{C}[x^{-1}]$, i.e.

 $\lambda(x^i) = c_{-i-1} = 0 \text{ for } -i - 1 \ge 0, \ i \le -1,$

i.e. $\varphi(\mathbb{C}[x]) = (x^{-1}\mathbb{C}[x^{-1}])^0$, where $x^{-1}\mathbb{C}[x^{-1}] \subset is$ the subspace of Laurent series such that $a_i = 0$ for $i \ge 0$.

(vi) (Extra) Conclude that $\mathbb{C}[[x]] \simeq \mathbb{C}[x]^*$ and that $\mathbb{C}[x]^* \simeq \mathbb{C}[[x]]$.

Solution. Notice that (v) gives that $\mathbb{C}[[x]] \simeq (x^{-1}\mathbb{C}[[x]])^0$. By Lemma 23 (i) in the Lecture Notes we have:

$$(x^{-1}\mathbb{C}[[x]])^0 = \operatorname{null} \imath^*,$$

where $i: x^{-1}\mathbb{C}[[x]] \to \mathbb{C}((x))$ is the canonical inclusion. Now we claim that $\operatorname{null} i^* \simeq \mathbb{C}[x]^*$. Indeed, consider $\zeta: \mathbb{C}[x]^* \to \mathbb{C}((x))^*$ given by

$$\zeta(\lambda)(x^i) := \begin{cases} \lambda(x^{-i-2}) \text{ if } i \leq -2, \\ 0 \text{ else.} \end{cases}$$

It is easy to check that $\zeta(\mathbb{C}[x]^*) = \text{null } i^*$. The argument for $\mathbb{C}[x]^* \simeq \mathbb{C}[[x]]$ is similar, using the other result in (v).

3. Let $T: V \to W$ be a linear operator between real vector spaces. We define:

$$T_{\mathbb{C}}: V_{\mathbb{C}} \to W_{\mathbb{C}}, \qquad T(u+iv) := T(u) + iT(v).$$

(i) Prove that λ is an eigenvalue of T if and only if λ is an eigenvalue of $T_{\mathbb{C}}$.

Solution. *For this we need to assume that* $\lambda \in \mathbb{R}$ *.*

Let λ be an eigenvalue of T with eigenvector $v \in V$, that $T(v) = \lambda v$ and $v \neq 0$. Consider $T_{\mathbb{C}}(v + iv) = T(v) + iT(v) = \lambda v + i\lambda v = \lambda(v + iv)$. So v + iv is an eigenvector of $T_{\mathbb{C}}$ with eigenvalue λ .

Now consider $v \in V_{\mathbb{C}}$ such that $T_{\mathbb{C}}(v) = \lambda v$. We write as $v = v_r + iv_i$ for $v_r, v_i \in V$. Then we have:

$$\lambda(v_r + iv_i) = T_{\mathbb{C}}(v_r + iv_i) = T(v_r) + iT(v_i).$$

The real part gives $\lambda v_r = T(v_r)$ and the imaginary part gives $\lambda v_i = T(v_i)$. Since either v_r or v_i is non-zero, otherwise v is zero, we have that either v_r or v_i is an eigenvector of T with eigenvalue λ .

(ii) Prove that λ is an eigenvalue of $T_{\mathbb{C}}$ if and only if $\overline{\lambda}$ is an eigenvalue of $T_{\mathbb{C}}$.

Solution. Now consider $v \in V_{\mathbb{C}}$ such that $T_{\mathbb{C}}(v) = \lambda v$. We write as $v = v_r + iv_i$ for $v_r, v_i \in V$. Let $\lambda = (a + ib)$ then we have:

$$(a+ib)(v_r+iv_i) = (av_r - bv_i) + i(bv_r + av_i) = T(v_r) + iT(v_i).$$

By equating the real and imaginary part we have: $T(v_r) = (av_r - bv_i)$ and $T(v_i) = (bv_r + av_i)$. Now consider $v' := v_r - iv_i$, then we have:

$$T_{\mathbb{C}}(v_r - iv_i) = T(v_r) - iT(v_i)$$

= $(av_r - bv_i) - i(bv_r + av_i)$
= $(a - ib)(v_r - iv_i).$

Thus $v_r - iv_i$ is an eigenvector with eigenvalue $\overline{\lambda} = a - ib$. The other direction has exactly the same proof.

4. Let V be a finite-dimensional vector space and consider $T \in \mathcal{L}(V)$ and $U \subseteq V$ a subspace invariant under T. The quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by:

$$T/U: V/U \rightarrow V/U, \qquad T/U(v+U) := T(v) + U.$$

(i) Check that T/U is well-defined.

Solution. Let v + U = v' + U in V/U we need to check that the assignments T/U(v + U) := T(v) + U and T/U(v' + U) = T(v') + U produce the same answer. Indeed, let $u \in U$ such that v - v' = u, then we have $T(v) - T(v') = T(v - v') = T(u) \in U$ since U is invariant under T. Thus, T(v) + U = T(v') + U.

One also needs to check that T/U is linear. Consider $a \in \mathbb{F}$ and $u + U, u' + U \in V/U$ then we have:

$$T/U(a(u+U)+u'+U) = T(au+u')+U = aT(u)+T(u')+U = a(T/U(u)+U)+(T/U(u')+U).$$

(ii) Show that each eigenvalue of T/U is an eigenvalue of T.

Solution. Let λ be an eigenvalue of T/U, then there exist $x \in V/U$ such that $x \neq 0$ and $T/U(x) = \lambda x$. Consider $W \subseteq V$ such that $W \oplus U = V$, which exists by Lecture Notes Lemma 5, since V is finite-dimensional.

There exists an unique $w \in W$ such that w + U = x. Indeed, assume that there are $w, w' \in W$ such that w + U = w' + U, then $w - w' \in U$, since $U \cap W = \{0\}$, we get w = w'. Now we compute:

$$T(w) + U = T/U(w + U) = \lambda(w + U),$$

which implies that $T(w) - \lambda(w) \in U$.

Let $X := \text{Span}(w) \oplus U$. We just showed that $(T - \lambda \operatorname{Id}_X)(X) \subseteq U \subseteq X$. Since dim $U = \dim X - 1$ we have that the linear map $T|_X - \lambda \operatorname{Id}_X$ is not surjective, since X is finitedimensional $T|_X - \lambda \operatorname{Id}_X$ is also not injective. Thus, there exist $v \in X \subseteq V$ such that $T(v) - \lambda v = 0$, as we needed to prove.

(iii) Prove that the minimal polynomial of T is a multiple of the minimal polynomial of T/U.

Solution. Let p be the minimal polynomial of T on V. Notice that U is invariant under p(T) and that p(T)/U = p(T/U). Indeed, it is enough to check that

$$T^n/U(v+U) = T^n(v) + U$$

for each $n \ge 1$. Thus, p(T/U) = 0, since p(T) = 0. So by Lemma 33 we have that p is a multiple of the minimal polynomial of T/U as we needed to prove.

(iv) Prove that $p_{T/U}p_{T|U}$ is a multiple of p_T , here p_S is the minimal polynomial of the operator S.

Solution. Let r be the minimal polynomial of $T|_U : U \to U$. Let q be the minimal polynomial of T/U, then for every $v \in V$ we have

$$q(T/U)(v+U) = q(T)(v) + U = U.$$
(1)

Then we claim that $r \circ q(T) = 0$. Indeed, let $v \in V$ then we have:

$$r(T) \circ q(T)(v) = r(T)(v) = 0$$

since by (1) $q(T)(v) \in U$ and r(T) = 0 on U.