
Math 2102: Homework 1
Solutions

1. Let T ∈ L(V ) and consider bases B1 = {v1, . . . , vn} and B2 = {u1, . . . , un} of V . Prove that the
following conditions are equivalent:

(1) T is injective.

(2) The columns of M(T,B1, B2) are linearly independent in Fn.

(3) The columns of M(T,B1, B2) span Fn.

(4) The rows of M(T,B1, B2) are linearly independent in Fn.

(5) The rows of M(T,B1, B2) span Fn.

Solution. Notice that the columns ofM(T,B1, B2) are given by wi =M(V,B2)(Tvi) for 1 ≤ i ≤ n.

(1)⇒ (2). Assume by contradiction that there exists a non-zero linear combination:

a1w1 + · · ·+ anwn = 0.

By the linearity of M(V,B2)(−) and T we have

0 =
n∑

i=1

aiM(V,B2)(Tvi) =M(V,B2)(
n∑

i=1

aiTvi) =M(V,B2)(T (
n∑

i=1

aivi)).

Since {v1, . . . , vn} is a basis the non-zero linear combination
∑n

i=1 aivi 6= 0. This gives that nullT 6=
{0}, which is a contradiction with T being injective.

(2)⇒ (1). Suppose T is not injective, i.e. a1, . . . , an ∈ F such that a1w1 + · · ·+ anwn ∈ nullT . By
similar computations, we see that a1v1 + · · ·+ anvn = 0, which is absurd as B2 is assumed to be a
basis.

(2)⇒ (3). We need to prove that {w1, . . . , wn} span Fn. Since dimFn = n, the result follows from
Lemma 7 (2) from the Lectures notes.

(3) ⇒ (2). Since there are only n columns in total, they would span a space with dimension less
than n if they are not linearly independent.

The implications (3)⇔ (5) follow from Lemma 13.

(5)⇔ (4). This could be proven similar to (2)⇔ (3).

2. Let V be a finite-dimensional vector space and L(V ) the space of linear maps from V to itself.
Given a linear operator T ∈ L(V ).

(i) Assume that TS = ST , for every S ∈ L(V ). Prove that T = λ IdV for some λ ∈ F, where IdV

is the identity operator on V .

Solution. Let’s assume by contradiction that there exists a non-zero vector v ∈ V such that
0 6= T (v) 6= λv for all λ ∈ F. Then {v, T (v)} is a linearly independent set, by Example 8 (iii)
in the Lecture Notes. Let {v, T (v), v3, . . . , vn} be an extension of {v, T (v)} to a basis of V ,
which always exists by Corollary 2. (2).

Now we define S : V → V by S(T (v)) = v and S(v) = 0 and S(vi) = vi for i ∈ {3, . . . , n}.
Then we have a linear opeartor S such that

v = S ◦ T (v) 6= T ◦ S(v) = T (0) = 0,

which is a contradiction.
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(ii) Assume that T = λ IdV for some λ ∈ F. Prove that T is represented by a diagonal matrix
with entries λ ∈ F for any basis of V .

Solution. Let BV = {v1, . . . , vn} be a basis. Assume by contradiction that there exist i 6= j
such that ai,j 6= 0. This gives T (vi) = ai,jvj +

∑
k 6=i ai,kvk = λvi. Thus, we have:

ai,jvj + (ai,i − λ)vi +
∑

k 6=j,k 6=i

ai,kvk = 0.

Since {v1, . . . , vk} are linearly independent we obtain that ai,k = 0 for all k 6= i and that
ai,i = λ.

(iii) Assume that T is invertible. Let B be a basis of V and M(T ) := M(T,B,B) the matrix
representing T in the basis B. Prove that M(T ) is invertible and that M(T )−1 represents
the inverse of T in the basis B.

Solution. By Lemma 12 in the lecture notes we have:

M(T,BV ) ◦M(T−1, BV ) =M(T ◦ T−1, BV ) =M(IdV , BV ). (1)

By (ii) one has that M(IdV , BV ) is the diagonal matrix with coefficients 1. Thus, by multi-
plying (1) by M(T,BV )−1 we obtain:

M(T−1, BV ) =M(T,BV )−1,

as required.

3. Recall the following construction from Example 3 in the lecture notes. Given V a vector space over
R. We define its complexification VC as follows:

• as a set we let VC := V × V ;

• + : VC × VC → VC is given by (u1, v1) + (u2, v2) := (u1 + u2, v1 + v2);

• scalar multiplication is defined as (a+ bi) · (u1, v1) = (au1 − bv1, bu1 + av1).

(i) Check that VC is a vector space over C.

Solution. Consider (u1, u2), (v1, v2), (w1, w2) ∈ VC and (a+ ib), (c+ id) ∈ C we need to check
the list of axioms in Definition 1.20 from the textbook.

• (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) = (v1 + u1, v2 + u2) = (v1, v2) + (u1, u2);

• ((u1, u2)+(v1, v2))+(w1, w2) = (u1 +v1, u2 +v2)+(w1, w2) = (v1 +u1 +w1, v2 +u2 +w2) =
(v1, v2) + (u1 + w1, u2 + w2) = (u1, u2) + ((v1, v2) + (w1, w2));

• ((a+ ib)(c+ id))(u1, u2) = (ac− bd+ i(bc+ad))(u1, u2) = ((ac− bd)u1− (bc+ad)u2, (ac−
bd)u2 + (bc + ad)u1) = (a(cu1 − du2) − b(du1 + cu2), b(cu1 − du2) + a(du1 + cu2)) =
(a+ ib)(cu1 − du2, du1 + cu2) = (a+ ib)(c+ id)(u1, u2);

• (u1, u2) + (0, 0) = (u1 + 0, u2 + 0) = (u1, u2), where 0 ∈ V is the zero vector in V ;

• (u1, u2) + (−u1,−u2) = (u1 − u1, u2 − u2) = (0, 0);

• (1, 0)(u1, u2) = (u1, u2);

• (a+ib)((u1, u2)+(v1, v2)) = (a+ib)(u1 +v1, u2 +v2) = (a(u1 +v1)−b(u2 +v2), a(u2 +v2)+
b(u1+v1)) = (au1−bu2+av1−bv2), au2−bu1+av2−bv1) = (a+ib)(u1, u2)+(a+ib)(v1, v2);

• ((a+ ib)+(c+ id))(u1, u2) = ((a+c)+ i(b+d))(u1, u2) = ((a+c)u1−(b+d)u2, (a+c)u2 +
(b+d)u1) = (au1−bu2+cu1−du2, au2+bu1+cu2+du1) = (a+ib)(u1, u2)+(c+id)(u1, u2).
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(ii) Given W a vector space over C we denote by W̄ the same set W seen as a vector space over
R. Explain why W̄ is a vector space over R.

Solution. The reason why W̄ is a vector space over R is that we can restrict the action of
C to R to obtain an action of R. In details, (−) ·W̄ (−) is defined such that the following
commutative diagram commutes:

R× W̄ W̄

C×W W

(−)·W̄ (−)

(−)·(−)

.

To check that W̄ is a vector space over R we notice that the only axioms which are not immedi-
ate are the ones involving scalar multiplication. The axiom that says that scalar multiplication
on a vector space is associative follows by noticing that the diagram below

R× R× W̄ R× W̄

R× W̄ W̄

mR×IdW̄

IdR×(−)·W̄ (−) (−)·W̄ (−)

(−)·W̄ (−)

commutes, because the diagram

C× C×W C×W

C×W W

mC×IdW

IdC×(−)·W (−) (−)·W (−)

(−)·W (−)

commutes, since W is a vector space. A similar argument proves the distributivity properties
of scalar multiplications.

(iii) Prove that ı : V → VC given by ı(v) = (v, 0) is a linear map when both V and VC are seem as
vector spaces over R. Argue why any linear map ϕ : V → W into a real vector space W can
be extended as an R-linear map to VC.

Solution. Let v, u ∈ V and a ∈ R we calculate:

ı(av + u) = (av + u, 0) = (av, 0) + (u, 0) = a(v, 0) + (u, 0) = aı(v) + ı(u).

This shows that ı is R-linear, i.e. a linear map between real vector spaces. Let ϕ : V →W be
a linear map between real vector spaces, we can consider ϕ̃ : VC →W given by

ϕ̃(v1, v2) := ϕ(v1).

We check this map is linear, consider (v1, v2), (u1, u2) ∈ VC and a ∈ R, then we have:

ϕ̃(a(v1, v2) + (u1, u2)) = ϕ(av1 + u1) = aϕ(v1) + ϕ(u1) = aϕ̃(v1, v2) + ϕ̃(u1, u2).

Notice that ϕ̃ is not C-linear, i.e.

iϕ̃(v1, v2) 6= ϕ̃(i(v1, v2)),

the left-hand side gives iϕ(v1), whereas the right-hand side gives −ϕ(v2).
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(iv) Let V be a vector space over R and W a vector space over C. We will denote by LR(V, W̄ )
the set of linear maps between V and W̄ as vector spaces over R and by LC(VC,W ) the set
of linear maps between VC and W as vector spaces over C. Prove that there exists a bijective
function:

ϕ : LR(V, W̄ )→ LC(VC,W ).

(Hint: In how many ways can the map from (iii) be extended?)

Solution. The comment at the end of solution for the previous item hints at how to write the
function ϕ. Given L ∈ LR(V, W̄ ), we let

ϕ(L)(v1, v2) := L(v1) + iL(v2).

We first check that ϕ(L) is C-linear. Given (v1, v2), (u1, u2) ∈ VC and (a+ ib) ∈ C we have:

ϕ(L)((a+ ib)(v1, v2) + (u1, u2)) = ϕ(L)(av1 − bv1 + u1, bv1 + av2 + u2)

= L(av1 − bv2 + u1) + iL(bv1 + av2 + u2)

= aL(v1)− bL(v2) + L(u1) + ibL(v1) + iaL(v2) + iL(u2)

= aL(v1) + ibL(v1) + (a+ ib)iL(v2) + L(u1) + iL(u2)

= (a+ ib)ϕ(L)(v1, v2) + ϕ(u1, u2).

Finally, we check that ϕ is a bijection. Consider the function ψ : LC(VC,W ) → LR(V, W̄ )
given by:

ψ(S)(v) = S(v, 0).

We claim that ψ is an inverse to ϕ. Let’s calculate, given S ∈ LC(VC,W ) for every (v1, v2) ∈
VC we have:

ϕ(ψ(S))(v1, v2) = ψ(S)(v1) + iψ(S)(v2)

= S(v1, 0) + iS(v2, 0)

= S((v1, 0) + i(v2, 0))

= S(v1, v2).

Thus, ϕ ◦ ψ = IdLC(VC,W ).

Similarly, for any L ∈ LR(V, W̄ ) and v ∈ V we have:

ψ(ϕ(L))(v) = ϕ(L)(v, 0)

= L(v) + iL(0)

= L(v).

Thus, ψ ◦ ϕ = IdLR(V,W̄ ).

(v) (Extra) Is the function ϕ above linear? Notice that you first need to think about why the sets
are vector spaces and over which field they are vector spaces.

Solution. Addition and scalar multiplication of linear maps could be done pointwise, and the
resulting map is again linear. One should check the operations indeed define a vector space
structure by going through the axioms.

The base field of LR(V,W ) is naturally R, while that of LC(VC,W ) is naturally C. However,
the linearity of a map between vector spaces over different fields is not well-defined, so we have
two choices: Realize LC(VC,W ) as an R-vector space or define a C-vector space structure on
LR(V,W ).
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If LC(VC,W ) is realized as an R-vector space, i.e. we only allow multiplication by scalars in
R. We compute

ϕ(aL1 + L2)(v1, v2) = (aL1 + L2)(v1) + i(aL1 + L2)(v2)

= aL1(v1) + iaL1(v2) + L2(v2) + iL2(v2)

= aϕ(L1)(v1, v2) + ϕ(L2)(v1, v2)

where a ∈ R and (v1, v2) ∈ VC. Thus, ϕ is R-linear.

To define a C-vector space structure, the rest is to define a scalar multiplication of complex
numbers, which could be easily done as the C-vector space structure on W allows us to use the
pointwise multiplication. By similar computations above, we may conclude that ϕ is C-linear
in this case.

(vi) (Extra) Does ϕ preserve properties of the linear operators? For instance, if T ∈ LR(V, W̄ ) is
injective is ϕ(T ) injective? Same question for surjective.

Solution. Suppose T ∈ LR(V, W̄ ) such that kerT is trivial. If ϕ(T )(u, v) = 0, then Lu+iLv =
0, i.e. Lu = Lv = 0, and hence u = v = 0, which implies (u, v) = 0, i.e. ϕ(L) is still injective.
[Stop and think about the meaning of 0’s here.]

Suppose T ∈ LR(V, W̄ ) is surjective, i.e. ∀w ∈ W , ∃ v ∈ V such that Tv = w, which implies
ϕ(T )(v, 0) = w, so ϕ(T ) is still surjective.

4. Let V and W be finite-dimensional vector spaces over a field F.

(i) Given a subspace U ⊂ V , prove that there exists T ∈ L(V,W ) with nullT = U if and only if
dimU ≥ dimV − dimW .

Solution. Assume that there exist U such that nullT = U . Then the fundamental theorem
of linear algebra gives:

dimU = dim nullT = dimV − dim rangeT.

Since rangeT ⊆W , we have dimW ≥ dim rangeT , which gives that

dimV − dimW ≤ dimV − dim rangeT = dimU.

Now assume that dimV − dimW > dimU this gives that:

dimV − dim rangeT ≥ dimU ⇒ dim nullT > dimU,

which implies that nullT 6= U .

(ii) Prove that T ∈ L(V,W ) is injective if and only if there exists S ∈ L(W,V ) such that ST = IdV ,
the identity operator on V .

Solution. Assume that there exist S such that ST = IdV . Assume by contradiction that T is
not injective, then there exist v1, v2 ∈ V such that v1 6= v2 and T (v1) = T (v2). But applying
S we obtain that v1 = ST (v1) = ST (v2) = v2, which is a contradiction.

Assume that T is injective. Consider the subspace rangeT ⊆ W , we can find U ⊆ W such
that U ⊕ rangeT = W , since W is finite-dimensional (this is 2.33 in the textbook). Now we
define S : W → V as follows:

S(w) =

{
v if w ∈ rangeT

0 else
.
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Notice that this is well-defined, because T is injective and we decomposed W as a direct sum,
so each w can be uniquely written as w1 + w2, where w1 ∈ rangeT and w2 ∈ U . We now
notice that ST (v) = v for every v ∈ V .

(iii) Prove that T ∈ L(V,W ) is surjective if and only if there exists S ∈ L(W,V ) such that
TS = IdW , the identity operator on W .

Solution. Assume that TS = IdW . Let w ∈W , then we have that S(w) ∈ V and T (S(w)) =
w, thus T is surjective.

Assume that T is surjective and consider nullT ⊆ V . Because V is finite-dimensional, again
2.33 in the textbook, guarantees that there exist U ⊆ V such that nullT ⊕ U = V . We define:

S(w) =

{
v if v ∈ U and T (v) = w

0 else
.

We claim that S is well-defined. Indeed, suppose that we have v1, v2 ∈ U such that T (v1) =
T (v2) then v1 − v2 ∈ nullT and v1 − v2 ∈ U . Since nullT ∩ U = {0} we have that v1 = v2.
Now notice that for any w ∈W we have TS(w) = T (v) = w, by definition.

5. Let V1 and V2 be two vector spaces over a field F. Here is a definition U is a coproduct of V1 and
V2 if

(a) there are linear maps ı1 : V1 → U and ı2 : V2 → U ;

(b) for any vector space W and linear maps f1 : V1 →W and f2 : V2 →W , there exists an unique
morphism g : U →W such that

g ◦ ı1 = f1 and g ◦ ı2 = f2.

(i) Give examples of U satisfying condition (a) above.

Solution. We can take U = {0} and ı1 = ı2 to be the zero map. I guess it turns out that
requiring just condition (i) is not that meaningful.

(ii) Prove that there exists U satisfying (a) and (b) above.

Solution. Let U = V1 × V2 and ı1(v1) := (v1, 0) and ı2(v2) = (0, v2).

We check it satisfies the required property. We define h : V1 × V2 →W as follows:

g(v1, v2) := f1(v1) + f2(v2).

It is linear as follows from:

g(a(v1, v2) + (u1, u2)) = f1(av1 + u1) + f2(av2 + u2)

= af1(v1) + af(v2) + f1(u1) + f2(u2)

= ah(v1, v2) + h(u1, u2)

for any a ∈ F and v1, u1 ∈ V1 and v2, u2 ∈ V2.

Now notice that g ◦ ı1(v) = g(v, 0) = f1(v) for v ∈ V1 and g ◦ ı2(u) = g(0, u) = f2(u) for
u ∈ V2, as required.

Finally, we need to check that g is unique satisfying the above equations. Assume there exists
h : V1 × V2 →W such that h ◦ ıi = fi for i = 1, 2. Notice that for arbitrary (v1, v2) ∈ V1 × V2

we have:

(g − h)(v1, v2) = (g − h)((v1, 0)) + (g − h)((0, v2))

= (g − h) ◦ ı1(v1) + (g − h)ı2(v2) = 0,
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where we used that g − h is still a linear map, since the set L(V1 × V2,W ) is a vector space.
Thus, we get g − h = 0⇒ g = h.

(iii) Let U and U ′ be two vector spaces satisfying (a) and (b) above. Prove that U and U ′ are
isomorphic.

Solution. Assume that there exists U ′ and morphisms ı′i : Vi → U ′ such that for every two
linear maps hi : Vi →W there exists an unique g′ : U ′ →W such that g′ ◦ ı′i = hi.

Consider the diagram:

V1

V1 × V2 U ′ V1 × V2

V2

ı1
ı′1

ı1

g g′

ı2
ı′2

ı2

.

We explain: g exists because V1 × V2 is a coproduct, and g′ exists because U ′ is a coproduct.
Now in the diagram above we notice that because V1×V2 is a coproduct, there exist an unique
linear map k : V1 × V2 → V1 × V2 such that k ◦ ı1 = ı1 and k ◦ ı2 = ı2. Clearly, k = IdV1×V2

satisfies this property, thus g′ ◦ g which also satisfies this property because the diagram above
commutes has to be equal to IdV1×V2. The same reasoning applied to the diagram:

V1

U ′ V1 × V2 U ′

V2

ı′1 ı1

ı′1

g′ g

ı′2
ı2

ı′2

.

shows that g ◦ g′ = IdU ′.

6. Let V1 and V2 be two vector spaces. A vector space Z is a product of V1 and V2 if

(a) there are linear maps π1 : Z → V1 and π2 : Z → V2;

(b) for any vector space W and linear maps f1 : W → V1 and f2 : W → V2, there exists an unique
morphism h : W → Z such that

π1 ◦ h = f1 and π2 ◦ h = f2.

(i) Prove that there exists Z satisfying (a) and (b) above.

Solution. We claim that Z = V1 × V2 with π1(v1, v2) = v1 and π2(v1, v2) = v2 is a valid
construction of the product in F-Vect. Let f1 : W → V1, f2 : W → V2 be arbitrary linear maps.
Assume such h exists, we may conclude h(w) = (f1(w), f2(w)) from π1 ◦ h(w) = f1(w) and
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π2 ◦ h(w) = f2(w) by definition of π1, π2, so the uniqueness is guaranteed. We should check
the h we defined is a F-linear map (F-Vect morphism) to prove the existence. Notice

h(aw + w′) = (f1(aw + w′), f2(aw + w′))

= (af1(w) + f1(w′), af2(w) + f2(w′))

= a(f1(w), f2(w)) + (f1(w′), f2(w′))

= ah(w) + h(w′)

for any a ∈ F and w,w′ ∈W , so we are done.

(ii) Let U be a coproduct of V1 and V2 as defined in Problem 5 and Z be a product of V1 and V2.
Prove that U and Z are isomorphic.

Solution. Similar to the proof in 5(iii), we may prove that the construction by universal
properties is always unique up to isomorphisms, so it suffices to show that one of the products
we constructed is isomorphic to one of the coproducts we constructed. However, this is trivial
as we are using the exact same F-vector space as the product and coproduct.

7. (Extra) Redo Problem 5 and 6, but considering only sets and functions. Is it the case that the
coproduct and product are isomorphic (i.e. bijective as sets) in that case?

Solution. One may easily check the product in Set is given by the Cartesian product, while the
coproduct is given by the disjoint union. In general, they are not isomorphic. For example, {1, 2}×
{3} = {(1, 3), (2, 3)} contains two elements, while {1, 2} t {3} = {1, 2, 3} contains three elements.

8


