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1 Introduction

In this short note we present some details and references for the well-known fact that the
moduli of (almost) perfect complexes on a proper derived algebraic space is locally geometric.
This generalizes some previous constructions as:

1. the moduli of (universally glueable) complexes on an algebraic space of Lieblich [1];

2. the derived quot scheme of Ciocan-Fontanine and Kapranov [2];

3. the the moduli of perfect complexes on a derived scheme of Toen-Vezzosi [3].

The reason why we do this, as it is clearly not an original result, is more as a study in
derived algebraic geometry, more specifically on how to use Lurie’s generalization of Artin’s
representability theorem. We should mention that the recent [4] has some overlap with the
result below. The reader can also take a look at the related [5, 6, 7, 8].

1.1

Notation

Spc denotes the co-category of spaces (we will also use this as a model for co-groupoids,
i.e. (00, 1)-categories all of whose 1-morphisms are invertible). An element X € Spc
is said to be n-truncated if 7, (X) = 0 for all k > n.

By oo-category we mean an (0o, 1)-category. Given an oo-category % by the under-
lying oo-groupoid €~ we mean the maximal co-subcategory which is an oo-groupoid.
Otherwise specified the categorical objects as functors, subcategories, undercategories
and so on are taken in the oco-categorical sense.

A derived ring is a differential graded ring concentrated in positive cohomological
degrees, similarly for R-algebras, for a fixed derived ring R. A discrete (or ordinary)
ring (R-algebra) means a differential graded object concentrated in degree 0. We denote
the category of derived rings by Ring.

Schaﬁ denotes the oo-category of affine derived schemes, CZSchaﬂc denotes the subcat-
egory whose objects are spectra of discrete commutative rings and for any n > 0 let



Schaﬁé” be the category of affine derived schemes S given by S = Spec(R), where R
is n-truncated as a space!.

e Following [9] a derived scheme will be a pair (X, Ox) where X is an oo-topos and
Ox : Ring — X is a geometric morphism, such that there exists a cover {U; — 1y}
such that each (X/U,-7 ﬁX’Ui) is isomorphic to Spec(A) for A € Ring. This has
a map to the category of prestacks roughly given by mapping any A € Ring to
Maps ((Spec(A), A), (X, Ox))?. This map is fully faithful, however the theory is not
well-behaved for arbitray oo-topoi X. So we restrict this functor to the subcategory
where X is 0-localic (cf. [10, Section 6.4.5.]). For us a derived scheme is an element

in the image of the restricted functor. The oo-category of derived schemes is denoted
Sch.

e A prestack will mean a functor 2 : Sch — Spc. A stack is such an object satisfying
étale descent. A stack 2" which admits a smooth surjection U — 2 from an affine
derived scheme is called an algebraic space (or derived Artin O-stack). More generally,
for any n > 0 a derived Artin n-stack is an 2 such that there exists a smooth surjective
map U — 2 from an affine derived scheme which is representable by a derived Artin
(n — 1)-stack?.

e For a fixed derived scheme S (resp. a prestack ) let Schyg, Schigf ot Sch?gf (resp.

Sch/ 4, Sch?dg,CZ Sch?g) denote the corresponding subcategories inside the under cat-
egory of prestacks over S (resp. Z7).

e For a given prestack 2, its classical part “.2" is the Kan extension of its restriction
to “Sch®E. For any n > 0 we let 75"(27) denote the Kan extension of its restriction
to Schfh<n,

o We will say a prestack 2" has a cotangent complex if it admits a procotangent complex
in the sense of [11, Part. III.1]. Given a point z : S — 27, where S is an affine derived
scheme, we denote the cotangent complex at x by 7 Z". Recall this has the following
corepresenting property, for any .% € QCoh(S)=Y

Homqyooh s (T; 2, F) ~ Maps5(S#, Z),

where Sz denotes the square-zero extension of S associated to %, namely Sz =
Spec(R® F), for S = Spec(R) and R @ .# the derived ring where R acts on % by the
module structure and two elements of .% multiply to zero.

e A prestack 2 is said to be integrable if for A a discrete m-adically complete local ring,
the natural map colimy 2 (A/m") — 2 (A) is an equivalence.

INote that /Sch! = gen?fh-<0,

2See [9, Section 2.4.] for the precise meaning of this.

SAmap f: 2 — % is said to be representable by an affine derived scheme (resp. algebraic space, derived
Artin (n — 1)-stack) if for all étale maps S — %, 2" xg S is an affined derived scheme (resp. algebraic
space, derived Artin (n — 1)-stack).



A map of prestacks f : Z° — % is locally almost of finite presentation if locally for
the étale topology it is almost of finite presentation?.

e A map of prestacks f : 2 — % which is representable by a derived algebraic space
is said to be (strongly) proper if it is: (i) (strongly) separated; (ii) quasi-compact; (iii)
locally of finite presentation to order 0; and (iv) For every Spec(R) — ¢ the pullback
map Spec(R) X Z — Spec(R) induces a closed map at the level of the underlying
topological spaces °.

e For a stable oo-category ¢ with a t-structure (¢=°,¢=°) which is left t-complete, we
say an object X € € is almost compact if: (i) it is bounded below; and (ii) for all
n >0, 75"(X) is a compact object in €=<"S.

e For a symmetric monoidal co-category € with a t-structure, we denote by €7 its heart,
or more generally for I C Z let ¢! be the subcategory generated by objects which have
vanishing cohomology for any i ¢ I. For n > 0 we say that an element .# € % has
Tor amplitude bounded by n if for all 4 € €°

wk(ﬂ‘@%)zo,

for all £ > n. In particular, for n = 0 we say % is flat. And if there exists an n such
that .# has Tor amplitude bounded by n, we just say that .% has finite Tor amplitude.

e Given amap f: X — S or an element .% € QCoh(X), and a map T'— S, we denote
by X7 =T xg X its base change and % the pullback of .Z to Xr.

2 Representability theorem

Let S € Sch™® be the spectrum of a connective derived ring R. We say that R is a
Grothendieck ring if it is Noetherian as a derived ring” and for all prime ideals p € H(R),
the map from the localization of H°(R) at p to its completion is geometrically regular.
Consider &~ — S a prestack over S, one has the following theorem due to Lurie [14].

Theorem 1. 2 is an n-derived Artin stack if and only if
(i) Z has a cotangent complex;

(1) Z is infinitesimally cohesive;

4For a map A — B of derived rings, we say B is almost of finite presentation over A if for all n > 0 it is
of finite presentation to order n. Roughly, this means that 7<"(B) is a compact object in the category of
7"(A)-algebras (for a precise definition cf. [12, Section 8.]).

®See [13, Section 1.4.] for more on the notion of underlying points of a derived algebraic space.

6Here 7" denotes the truncation of X to the subcategory €<". Note this is coherent with the previous
notaiton for the usual t-structure on the category of connective derived rings. Recall an object is compact
if the functor it corepresents commutes with filtered colimits.

"Recall this means that H°(R) is Noetherian and H*(R) is finitely generated as a H°(R)-module for each
1> 0.



(iii) Z is convergent;
(iv) Z satisfies étale descent;

(v) Z s locally almost of finite presentation;
(vi) 2 (T) is n-truncated, for any T € Sch%?;

(vii) 2 is integrable.

One can use some results of [11] to reduce most of these conditions to properties of “.2"
and of the deformation theory of 2 .

Theorem 2. 2 is an n-derived Artin stack if and only if

(1) Z admits deformation theory;

(2) T*Z has finitely generated cohomology on each degree, for all x : T — Z, where
T e schl;

(3) X satisfies étale descent;

(4) < is locally almost of finite presentation;
(5) X (Ty) is n-truncated, for any Ty € Sch%ﬁr;

(6) X is integrable.

Part III.1 - Definition 7.1.2]). However, condition (2) implies that the a priori pro-cotangent
complex of 2 is corepresentable. Thus, one establishes that (i-iii) is equivalent to (1-2).

Items (1-3) are equivalent to (i-iv). Indeed, this is a result from [11](cf. Chapter III, Sec-
tion 1, Proposition 8.2.2 and Remark 8.2.4) which says that if a prestack admits deformation
theory and its classical part satisfies étale descent, then so does it.

Items (1-2) and (4) imply (v). This is [11, Part III.1 - Corollary 9.1.4.]. Conversely, (v)
clearly implies (4).

The last two items just match the previous conditions. O

Remark 1. Conditions (1-2) is what [11] refers to as 2~ admits corepresentable deformation
theory.

3 The Derived Quot functor of points

Let R be an excellent derived ring, and S the corresponding affine derived scheme. Let
X — S be a (strongly) proper map of finite type representable by a derived algebraic space.
We denote by QCoh(X)2Pef the co-subcategory of QCoh(X) consisting of almost perfect
objects, that is .7 € QCOh(X)aperf if .% is bounded above and for all n € Z, 72"(%) is a
compact object of QCoh(X)=".



Remark 2. The category QCoh(X )aperf is the good object to consider because almost
perfect objects are preserved under proper maps. In contrast, the subcategory Coh(X) of
complexes with bounded and coherent cohomology does not behave well in derived algebraic
geometry. Namely, if one considers the pullback of the structure sheaf of any affine derived
scheme to its dual numbers, this has only unbounded below resolutions, which are neither
coherent nor perfect; they are, however, almost perfect.

aperf

We also record here some properties about QCoh(X) that we will use at times (cf.

[13] Proposition 5.2.4.).

Proposition 1. The category QC’oh(X)aperf has a t-structure, given by
QCoh(X ™21 — QCoh(X)Z" N QCoh(X )W,

In particular, QCoh(X)aperf’O ~ Coh(X)°, i.e. the heart is the abelian category of coherent

sheaves. An element F € QCoh(X)aperf is a perfect complex if and only if F has finite
Tor amplitude.

From now on, we will use (QCoh(X)aperf’fo, QCoh(X)aperf’Z()) to refer to the above
t-structure.

Fix .# € QCoh(X )aperfgo, one can study the following functors 3&;(") : Sch?% — Grpd
fori=1,2and n € NU {o0}.
aperf

1. %(n) (T") is the underlying co-groupoid associated to the co-subcategory of QCoh(X7)
consisting of sheaves .%, such that for all étale covers 7" — T

U (Xg, #omx,, (Fr, Fr)) [-1]
has Tor amplitude bounded by n.

2. %(”) (T') is the underlying oco-groupoid associated to the co-subcategory of the undercat-

egory QCoh(XT)?Lperf consisting of objects Zr 2% &, such that for all étale covers

Fr/
I' (X7, #omy,, (9 @ ker(q)7))
has Tor amplitude bounded by n.

Remark 3. If n = oo then the boundedness condition on the Tor amplitude is vacuous so
one retains the oo-groupoid associated to the whole category. If one suppose that we take

elements .# which are perfect, then the conditions can be written as .# € QCoh(X )gjerf if
for all étale covers 7" — T

r (XT/,,%”omXT/y%/, %) j\T’) [—1],

as the dual .7V is well-defined. For n = 1 the objects of this category are called universally
glueable by [1]. The above is not such a hard condition to be satisfied. For instance if X — S
is a flat, proper, perfect and classical algebraic space over S it is automatic from [4, 15]. We
refer the reader to [4] for more general examples.
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We can now state the main results of this note.

Theorem 3. Fori = 1,2, the functors %(n) are derived Artin n-stacks locally of finite type,
and %(oo) are locally geometric stacks®. In particular

2% ~ colimy 2™

7

To put the above result in context here are some comparisons with previous constructions
in the literature. Let 23 be the substack of 3{2(0) associated to the subcategory of perfect
complexes concentrated in non-negative degree.

Theorem 4. When X — S is a projective ordinary scheme. The derived Artin 0-stack Z3
agrees with the derived scheme associated to the dg scheme constructed by Ciocan-Fontanine
and Kapranov. In particular, it is a derived scheme.

Theorem 5. When X — S is an ordinary algebraic space. The underlying classical stacks

of 3&”1(1) coincides with the moduli of complex of universally glueable S-perfect sheaves of
Lieblich/[1].

Our strategy of proof is rather straightforward, we just check that the conditions of
Theorem 2. are satisfied. To give a better understanding of the structure of the result
we will start by proving the conditions that hold regardless of n first. We do that for the
particular case of 5&”1(00 and 2 (®)2_ which turn out to be rather general as all the other

3&”1(”) and 3%”2(”) turn out to be open substacks of these, so that they automatically satisfy
the conditions. Finally we check the truncatedness condition for each class.

Actually, we will prove some more general results above the assignment at the level of
oo-categories which we then by abstract nonsense imply the result for the functors %(Oo)

and 5&”2("). More precisely, consider
) aff
o/ Perf(X) : Schig — Cat,

which assigns .7 Perf(X)(T) = QCoh(X7)2PC to objects and pullbacks for morphisms.
Proposition 2. The functor of Perf has corepresentable deformation theory.
Proof. The first thing to check is that

colimyQCoh™(X . ) 5 QCoh®Pr (X)),

where 75"(T) means the derived scheme associated to the truncation of the derived ring to
cohomological degrees less than or equal to n. It suffices to check that given .# € Coh(Xr7)

there exists an m > 0 and a %, € QCohaperf(XTgm(T)) such that

F ~ G,

8This is called D~ locally geometric in [3]. It roughly means that locally one can find a derived Artin
n-stack which is isomorphic to it. And that globally one can find a filtered sequence of derived Artin stacks
whose colimit is the corresponding functor.



where ¢, : 7=™(T) — T. Tt is enough to argue locally, so one can suppose that Xrp is
affine. Now we argue by induction on the length of .%#. For .# of length 0, we know that
the almost perfect condition implies that .# is a finitely presented module (cf. [16]). Now
since .Z is finitely presented, there exists a number m such that all the relations between the
finite generators of .# can be written by considering only elements of cohomology degree less
than or equal to m in T. One takes ¢, to be the module over 7=™(T') generated by these
generators and relations. It is clear that it’s base change to T' agrees with .#. A similar
argument proves that morphisms between objects are determined at a finite stage as well.
Now suppose we proved the result, for both objects and morphisms, for up to length n. As
we can form any almost perfect complex .# of length n + 1 by an extension of a complex of
length n by something of length 1 we just need that the extensions are also determined at a
finite level. This follows from the induction as well.

Secondly, we need to check that it admits a pro-cotangent complex, i.e. it takes some
special pushouts to pullbacks, namely

QCoh™(Xg,. 5,) 5 QCoh P (Xy) QCoh™®Pe (x

%2)7

X
QCoh™x, )

where 4 — %, is a map in QCoh(S)=?, which is surjective in H°. We construct an inverse
to the natural map above, that is given %~ € QCohaperf(X s), € QCohaperf(Xg%) and

Jy € QCohaperf(X S%) whose pullback to Xg agree with % we consider the kernel of

ngl,*% D ng27*<%/2 — ZS’*%,

where 15 : S — S¢, 1Sy, ;- A€ the natural inclusions. It is easy to check that this is actually
an inverse.

The last thing to check is infinitesimal cohesiveness, i.e. for any ¢4 € QCoh(S )%_&g) / the
following holds

QCoh®Perf(x ) 5 Qron?Per x ) x | QCoh®Perf x ).

Qcohaperf (Xs,

where " = S Ug,, S is the (non-split) square zero extension corresponding to ¢. The same
map as above gives an inverse construction. ]

Proposition 3. The functor of Perf satisfies étale descent.

Proof. One can realise &7 Perf(T') as a QCoh(T')-linear category in the symmetric monoidal
oo-category of stable co-categories. Then by [17, Theorem. 5.4.] it satisfies étale descent. [J

The above actually uses a lot of machinery for what we want to do. We can prove more
directly this results if we restrict to our functors %(OO) ,fori=1,2.

Proposition 4. The functors Ce%(oo) satisfies €tale descent, more generally %(OO) itself
satisfies étale descent, fori1=1,2.



Proof. We note that <.2,°°(T) is equivalent to QCohaperf(Tfo(XT)), so one has to check
that the oco-category of almost perfect complexes on an ordinary scheme satisfy étale descent.
This is proved for example in [18, Theorem 1.3.4.]°. Or more explicitly still one can recall
how the proof of the usual descent for the ordinary (abelian) category of coherent sheaves
on X goes, i.e. by a Bar-Beck argument with respect to the descent data category, and run
the same argument for oco-categories using the analogous Bar-Beck-Lurie theorem. Now we

quote a result of [11] (Part III.1 - Proposition. 8.2.2. and Remark. 8.2.4.), which says that

it is enough to check étale descent for discrete affine schemes, so we get the result for 5&”1(00).

The case of %’2(00) is completely analogous. O
Proposition 5. The functor o Perf is integrable!®.

Proof. This is an extension of Grothendieck’s existence result to derived algebraic geometry.
This is the main result of [13] (cf. Theorem 5.3.2), namely one has an equivalence of categories

QCoh(X ;)P £ QCon(x 4)aperf,

where X ; is the formal completion of X4 along X/, and 2 : X; — X4 is the induced
inclusion map. The equivalence preserve perfect complexes, since it preserves perfect objects
and by previous results of [13] it also respects the t-structures. O

By restricting the equivalence to the associated oo-groupoids one has the following.
Corollary 1. The functors %(OO) for i =1,2 are integrable as well.

Remark 4. There is a more direct proof of the above result based on the usual Grothendieck
existence theorem. We give it below for convinience of the reader not so familiar with the
derived result. Let A be an complete discrete local ring with maximal ideal m. We denote
by X, the base change of X to the completion of Spec(A) at the point m. This has a

natural inclusion 2 : X ; — X4, which induces a restriction functor +* : QCohaperf(X a) —
QCohaperf(X 4)- We will prove this is an equivalence by constructing an inverse. By Proposi-
tion. 1. we know that QCohaperf(XA) has a t-structure (QCohaperf’zo(XA), QCohaperf’SO(XA)> .

Since the functor ¢* is t-exact, it is enough to prove that its restriction to QCohaperf’Zo(X 4)
is an equivalence. Let

QCohaperf’[O’"](XA) _ QCOhaperf,zo A QCohaperf’S"(XA),

we will proceed by induction on n. For n = 0, we have that QCohaperf’O(X 4) is the ordinary
abelian category of coherent sheaves on X 4. Now for any derived algebraic space, this is

9This reference actually proves a stronger result, namely that QCoh(X) satisfy fppf descent as a sheaf of
DG-categories. To get our version one just restrict to the underlying oco-groupoid, consider almost perfect
objects, and restrict to covers which are faithfully flat and étale.

0This means that when 27 is restricted to the category "ZSch?;g’formal of Artinian discrete derived rings

one has

271 (Spec(A)) =~ limy 27 (Spec(A/m™)),

for A such a derived ring with maximal ideal m.



equivalent to the usual category of coherent sheaves on the underlying underived algebraic
space (cf. (7)). Thus the equivalence

QC Ohaperf,o (X4) ~QC Ohaperf,o( X;)

follows from the usual Grothendieck existence theorem (cf. []). Suppose that the result holds
for Qcohaperf,[o,m] (Xa), and let ¢, be the restriction of ¢* to such a category. Then given any
F € QCohaperf’[O’erH (X ;) we will construct an element ¥ (.%) € QCohaperf’[O’mH] (Xa) by

Coker ((2,) " ([1]) = (25,)  (T<m(F)))

where 7<,,,(.:%) is the truncation of .# to degrees less than or equal to m and % is the
cokernel of the natural inclusion 7<,,(.#) — .#. One checks easily that ¥ is an inverse to
ty,+1- This finishes the proof.

Lemma 1. Given any map x : T — 3{1(00), that is an element Fr € QCOhaperf(XT), the
cotangent space at T s
T 2,° ~ Homx, (Fr, Fr[1)).

Given any map x : T — 3&”2(00), that is a map Fr > G, the cotangent space at  is
T 2, ~ Homx, (%, Ker(q)r[1]).

Proof. Since QCoh?P erf(XT) satisfies descent this is a local question, by picking an étale
cover of X one can restrict to the affine case, i.e. X = Spec(A) for some R-algebra A. Now

the result follows from Corollary 3. Let’s consider the map %”2(00) EN 5&”1(00) X 3&”1(00) which
forgets the map between the complexes. For any x : T — 5&”2(00), this induces a map

which is surjective. Given ¢y : ¥ — 9p[l], it is an element of the cotangent space of
3&”2(00) if there exists and element v, : Fr — Fr[l] such that the following commutes By

F —pr—— F[1]

qllt]

G ———— 9 1]
2

the surjectivity we can always find 1, that makes it commutes. Fixing such an element the
space of 1, which fit in the diagram is a torsor for Homx..(4r, Ker(q)7[1]). This finishes the
proof. O



Corollary 2. The functor %(Oo) satisfies conditions (2) and (4) of Theorem 2, fori =1,2.

Proof. Condition (2) follows from the above lemma and the fact that the cohomology of
an almost perfect complex of sheaves for a proper map between derived algebraic spaces is
finitely generated [17, Theorem 3.2.2.]'. Condition (4) is just a rephrasing of the definition

of QCohaperf(X ). Indeed, one says that a prestack 2" if locally almost of finite presentation
if and only if for all étale map T" — S 2 (T') — T is locally almost of finite presentation.

This is equivalent to: for all n > 0, and for all {7;}, a filtered collection in affgcn /s
(20 (lim, T;) = limm<"(2)(Ty)

is an isomorphism. The last condition for 2> (1 =1 or 2) is exactly that the objects of

1

QCoh?P erf(X ) are perfect when restricted to QCoh®P erf(X )=" for all n, which is the case
by definition. ]

Finally we need to check the truncatedness condition, namely condition (5) of 2. Before
we make a remark.

Remark 5. One would be naive to expect that we can represent 3&2(00) (for i = 1,2) as a
derived Artin n-stack for some fixed n. Namely, condition (5) boils down to the following.

For any m > n+ 2, T cetaft Sch/g a diagram as can be lifted by a map A,, — 5&”1(00).

0N, ————— Ay,

%(00)1 (T)

Concretely, what this says is that given .# € QCohaperf(XT) the space
HOH]XT(}\T, ﬁT[m — 1])

is discrete, i.e. m(Homy, (%, #[m — 2|)) ~ 0 for all £ > 0. For the case of 3&”2(00) (T') one
asks that Homy.,.(¢r, Ker(q)r|[m]) is discrete.

Proposition 6. The functors %(m) satisfy condition (5) with n = m, for all m > 0 and
1=1,2.

Proof. From the previous remark we see that the defining condition of %(m) (T') ensures that
7Tk(HOHlXT (ﬁ\T, ﬁT[m — 1])) ~ 7Tk+m(HOHlXT (yT, 9}) [—1])

vanishes for k +m > m. Similarly, for 2™ (T). O

' More precisely, the pushforward by a proper map preserves almost perfect objects, which over an affine
derived scheme are finitely presented modules on each degree (cf. [16] Proposition. 7.2.5.17.).
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4 Comparison with Ciocan-Fontanine and Kapranov
construction

We will now prove 4. Before doing that let’s make a little more explicit what the Tor
amplitude condition on 23 implies.

Remark 6. To simplify our discussion suppose .# € Perf’(X), i.e. that it is a coherent
sheaf (complex concentrated in degree 0) on X. Then any map 7" — 23 determines a map
q: % — 9. The Tor amplitude condition asks, in particular, that

Homx..(¢, Ker(q))

has Tor-amplitude 0, i.e. is flat. But we also restricted to ¢ that are concentrated in non-
negative degrees. Both of these conditions combine to give that Ker(q) is concentrated in
degree 0, that is .# — ¥ is surjective and ¥ itself is flat. These are exactly the conditions
in the definition of the usual Quot functor of points.

Also in [2] they consider the derived quot scheme defined over a field. To agree with their
construction in this section we take our excellent ring R to coincide with their field.
Let % be the prestack associated to the dg-scheme ZQuot (%) constructed in [2].

Proposition 7. % is a derived scheme and it has a tautological object T € Perf(¥ xg
X)5%, . s which is also flat.
Fox g

Before giving the proof we state a more concrete discription of the derived schemes we
consider.

Remark 7. Let # = Shv(Y) be the 0-localic co-topos corresponding to a derived scheme
(#,0x). Then the condition of being a derived scheme is equivalent to the following (cf.
[9] Theorem. 4.2.15.)

(i) (Y, mo(0%»)) is an ordinary scheme;
(ii) For all i > 0, m;(0y) is a quasi-coherent (0% )-module;
(iii) the sheaf Oy satisfies descent with respect to hypercovers.

Here one considers covers with respect to the Zariski topology.

Proof. Recall the definition of a dg-scheme as in [2] is a pair (X, Ox) where (X, m(0x)) is
an ordinary scheme, and each m;(0x) is a quasi-coherent m(0x)-module. This will be an
element of Sch if Ox is a hypersheaf, i.e. satisfy descent with respect to hypercovers. Now
we invoke a result from [10] Section. 7.4. which says that for any Noetherian topological
space of finite Krull dimension any sheaf is a hypersheaf. Then we note that by construction
Y is the underlying space of the scheme representing the usual quot functor of points. Than,
for X — S projective, over S Noetherian the result of Grothendieck [19] states that Y is
locally of finite type over S. This implies that it is Noetherian as locally it is of finite type
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over a Noetherian space and also that it has finite Krull dimension'? the locally of finite type
condition gives that each affine cover Spec(A) has A of finite relative Krull dimension over R.
However, [2] assumption that R is a field, hence has Krull dimension 0, gives that A has finite
(absolute) Krull dimension. So we can apply Lurie’s result and all sheaves are hypersheaves.
Let % be the image of the dg-scheme constructed in [2] under this inclusion. We claim % has

a tautological object .7 € QCohaperf(@ )”/, where .# is the sheaf associated to the module
®nHO(X, Z(n)) and that 7 is flat. It sufficies to determined a bounded complex of sheaves
of quasi-coherent 7y( % )-modules on Y to determined an element of QCoh®P erf(@ ). From
the construction of [2] one knows Y™ has a tautological quotient sheaf .# % T, where 7 is
the locally free sheaf whose stalk at a point x € ZQuot (F) is the element ¢ corresponding
to 7 4 &. This clearly receives a map from the sheaf .#. Our sheaf .7 is the pullback of
T to % xg X. It is obviously flat as it is a locally free sheaf. O

Remark 8. In [2] they only consider .F € QCohaperf’O(X ), i.e. # is a genuine coherent
sheaf, not a complex of coherent sheaves. This is why in our previous analysis of 23 we
supposed the same on .%. However one could have modified their construction to a general
F € Qcohaperf,zo<X) by taking ®cz®n>0 H(X, #(F)(n)). Note that the Tor amplitude
0 condition gives that . and ¢ have isomorphic cohomology except for one degree, on which
the former surjects on the later.

Remark 9. The above produces a map between prestacks f : # — 23. Indeed, since T
by definition is S-flat and concentrated in non-negative degrees, by the universal property
of 23 we get the map f.

Proposition 8. The map f induces an isomorphism at the level of classical prestacks, and

for every y € Sch/ci]?j the induced map T}“(y)% — T;% is an isomorphism.

Proof. The first statement is the fact that “.25(T) coincides with the usual quot functor of
points, for any T €% Sch%ff and . € QCohaperf’o(X ). This is what we made explicit in

Remark. 6. The second statement is the claim that for any .#% > ¢ and i € Z one has the
following isomorphisms

H' (T7%) ~ Homp(Myer(g): My|i]) ~ Homy x (Ker(q7), 7 [i]),

where Mye(q) = EnH(X, ker(¢g)(n)) and similarly for Mgy. The first isomorphism is just a
standard calculation, while the second isomorphism is just a restatement of [2, Proposition
4.3.3.]. H

Proof of Theorem 4. We can now invoke another nice result of [11] (cf. Part III.1 - Propo-
sition 8.3.2.). It says that if one has a map between two prestacks with deformation theory
(note that % has deformation theory because it is a derived scheme locally almost of finite
type), which induces an isomorphism between the classical prestacks and between the cotan-
gent complexes at all points, then the original map was an isomorphim. This is exactly what
we verified in the previous proposition. O

12Recall the Krull dimension of a scheme can be taken to be the supremum of the Krull dimension of affine
schemes covering it.
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A Tangent space calculation

Let A be a derived ring, M be an A-module concentrated in non-negative degrees. We denote
by A® M its square-zero extension by M. This has a map A® M — A of A-algebras. Given
any L € Mody,, the oo-category of A-modules one can consider 1y : L ® g A — L the
adjunction corresponding to the functors between Mod, and Mod gy, which forget the
structure of A-module through the quotient above, and extension of scalar with respect to
the same map. Let ) be the kernel of the map 7, i.e.

QS5 LaenABL

is an exact sequence.
Given any L, one has a section of the map nrg .4 1 L @aom A Qaon A — L @agn A.

Namely, consider
M—A®dp M — A,

as an exact sequence in Mod 447. One can tensor it with L& agps to obtain
L®@aay M — L — L Qg A. (1)
Equation (1) tensored with ® 4 A gives the following sequence in Mod 4:
L®aom M @aem A= Lo A L @asm A ®asm A.
Also Equation (1) gives a map
Yo L ®@aem A = L ®aey MI1],
in Mod ag/. By adjunction this gives a map:
1 L ®agn A@asn A — L @agnr A @4 MI1]
in Mod,. Hence one can define the map
o:0Q — L®y M[1],
by o = (n, ®ida) o yi o 51, 01
Now suppose given N € Mod gy, such that N ® 4 A >~ L. Considering the following

sequence
N®A@MM—>N%N®A@MA

of A @ M-modules. This is equivalent to
L®sM—> N — L,
which gives a map V& : L ®@agnm A — L @4 M[1].
Lemma 2. The map o defined before coincides with the composite i o 1.

It is enough to check: 73 = (n, ® id4) o y# o s, which follows from:

13



(i) spo(nr®ida) : L @agm A @agyu A — L @aam A @agn A is the identity;
(if) v o (np ®@ida) = (nr ®ida) o7

For (i) one considers the section sy : L — L ® agn A tensored with ® ggn A
sy ®idg : L®agn A — L @aonm A @agpm A,

which is just sp.
Item (ii) follows from the commutativity of the diagram below, where the lefthand square

S N ®id
L @aem % L ®agm A@aerr— A @L)‘AGBM A

YA v Yy

L®a Ml}—>L®A M A® L®a M1
Dt A 8

commutes because the map between the kernels of a4 and v is just sy. Namely, the
commutativity of the following diagram:

’YA[L
L@aom —A— L®iom  AQpent L@gen  A®a M[1)

SN SL SN ®id 4

L L®sem —A—— L®a M|
TN

This proves the following.
Proposition 9. For a fired L € Mody, the space
(N € Modagrs;| N @aent A=~ L}
is isomorphic to Homagy (L @ agm A, L @4 M[1]).
Corollary 3. For Modfl‘perf the category of almost perfect complexes of A-modules one has:

T Mod®™ ~ L ® LV[-1].
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