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Abstract. In this paper, we initiate the study of affine character sheaves. We start by
considering D(LG

LG
) an approriately defined category of étale ℓ-adic focus on the quotient

stack LG
LG

of a loop group LG by its conjugation action. The first main result is a decom-

position of LG
LG

into locally closed finitely presented substacks corresponding to Newton

strata, which gives a semi-orthogonal decomposition of the D(LG
LG

). Our second main re-
sult is a realization of the categorical cocenter of the affine Hecke category D(Iw\LG/Iw),
i.e. the category of unipotent affine character sheaves, as a full subcategory of D(LG

LG
).

We finish by constructing a semi-orthogonal decomposition of the category of unipotent
character sheaves using the Newton strata, this provides a categorification of the Newton
decomposition on the cocenter of the Hecke algebra of the p-adic groups, as established in
[12]. Our results hold both in the mixed and equal characteristic set up.
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Introduction

0.1. Lusztig’s Theory of Character Sheaves. We first give a brief review of Lusztig’s
theory of character sheaves on reductive groups. Let G be a connected reductive group over
an algebraically closed field k. Let G be a group scheme over k, such that G = G(k) and
pick a maximal torus and Borel T ⊂ B ⊂ G subgroup schemes. One has B = TU , where
U is an unipotent group scheme. We have a Bruhat stratification G = ⊔w∈WBẇB, where
each BẇB ↪→ G is a locally closed subscheme and W is the Weyl group of G. We then have
natural maps of quotient stacks:

B\G/B G
B

q
oo

p
// G
G ,

where A
H denotes the quotient stack of A under the conjugation action of the group H. The

character functor is given by

CH := p! ◦ q∗ : D (B\G/B) −→ D

(
G

G

)
,

where D(−) is the derived category of constructible sheaves on the quotient stacks. The
category of (unipotent) character sheaves is the full subcategory of D

(
G
G

)
generated by the

essential image of CH under colimits.
It was observed by Ben–Zvi and Nadler in [4] that for k the complex numbers and

considering D-modules as the sheaf theory, the category of unipotent character sheaves is
the categorical trace of D(B\G/B). At the level of abelian categories this was first proved
in [6].

When k is a field of positive characteristic, for instance k = Fq then one can relate
character sheaves on G to character of the group G(Fq). Indeed, we consider the theory
of étale constructible sheaves on G and let σ : G → G be the Frobenius morphism. Given
F a character sheaf on G with σ∗F ∼= F . The trace of Frobenius on the stalk of F over
g ∈ Gσ = G(Fq) yields a characteristic function on the finite group G(Fq). In fact, all the
almost characters of G(Fq) can be obtained in this manner.
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In the case of étale ℓ-adic sheaves it was initially proved in [30] that character sheaves are
obtained as the categorical trace of the abelian category of perverse sheaves on B\G/B and
the statement for the stable∞-categories of derived sheaves was proved in [21], building on
the argument of [4].

Our ultimate goal is to generalize Lusztig’s theory of character sheaves to loop groups.
In this paper, we study the categorical trace (co-center) of the affine Hecke category, which
is expected to realize the derived category of unipotent affine character sheaves. We realize
the categorical trace as a subcategory of étale constructible sheaves on the loop group
equivariant with respect to the conjugation action.

The point of view that we will adopt is to define the derived category of (unipotent)
character sheaves as the categorical trace of Iwahori-equivariant étale constructible sheaves
on the affine flag variety. We will realize such defined category of (unipotent) character
sheaves as a full subcategory of the category of étale constructible sheaves on the loop
group equivariant with respect to the conjugation action.

0.2. Newton Decompositions. Given a perfect field k, let L = k((ϵ)) or L is a non-
archimedean local field whose residue field is k. We consider a connected reductive group
G over the field L, where k is an algebraically closed field. Let LG be the loop group
ind-scheme, its k-points are given by G(L). This is actually an ind-perfect scheme in the
mixed characteristic case, we will ignore this point in the introduction see §2.1 for details.

Consider θ : LG → LG an automorphism of LG and let LG
Adθ(LG) denote the quotient

stack by the θ-twisted conjugation action, i.e. (g, h) 7→ ghθ(g)−1. There are two main cases
of interest: θ is the identity and θ is the Frobenius, when k is of characteritstic p.

The quotient stack LG
Adθ(LG) is a very complicated object to study. The first problem is

that LG is not an ind-finite type scheme the second is that we are taking the quotient by
LG itself. Many results can be proved by relaxing either of these difficulties:

• in [7] one consider the quotient C
Ad(LG) , where C is the comptact part of the Lie algebra

of LG, which is a placid scheme (see §1.4.4);
• if one considers LG/Iw or Iw\LG/Iw for Iw the Iwahori subgroup scheme, which is a
placid scheme, then many results are proved for the categoriesD(LG/Iw) andD(Iw\LG/Iw)
(e.g. [5]).

Before stating our results we review what was known at the level of k-points about the
quotient stack LG

Adθ(LG) . For L = Qp and θ = σ the Frobenius automorphism of Ğ, in [23,

24], Kottwitz classified the set B(G) of σ-conjugacy classes of Ğ by using the Kottwitz map

and Newton polygons. In [12], the first author established a bijection B(G) ≃ W̆ �σ W̆ ,

where W̆ �σ W̆ is a subset of special σ-twisted conjugacy classes of W̆ (see §2.1.2 for a

precise definition) and for each point O ∈ W̆ �σ W̆ defined a locally closed (admissible)

subset ĞO ⊂ Ğ stable under Ğ conjugation, such that Ğ = ⊔W̆�σW̆
ĞO.

In the first author’s joint work with Nie [16], these results were generalized to L = k((ϵ))

and θ is any automorphism of Ğ determined by a length-preserving automorphism of W̆ .
That is one has a decomposition:

(0.1) Ğ ≃ ⊔O∈W̆�θW̆
ĞO,

where each ĞO is a Ğ-conjugation stable locally closed admissible (see §2.1.2 for an expla-
nation of this terminology) subset.
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0.3. Schematic decomposition of LG
LG . In the rest of the introduction, for simplicity, we

only discuss the case where θ is the identity map and we write LG
LG instead of LG

Ad(LG) . In

the main context, we also consider the nontrival group automorphisms.
The first main result of this paper is a lift of the decomposition (0.1) to the level of

ind-schemes:

Theorem 0.1. For each Newton point O ∈ W̆ �θ W̆ there is a reduced ind-scheme LGO
equipped with a finitely presented locally closed embedding ȷO : LGO ↪→ LG, such that
LGO(k) ≃ ĞO.

The schematic image is always closed and thus it is difficult to define a locally closed
subscheme without using its closure. Thus despite the notation LGO, we need to define

LGO before introducing LGO. This definition is more involved than the definition of ĞO
even set-theoretically.

The definition consists in picking a representative wO ∈ W̆ and studying the conjuga-
tion action of a truncation of LG on the Schubert variety corresponding to wO. Using
the Deligne–Lusztig reduction method of [13], we can reduced the analysis to the straight

elements in W̆ . In this case the conjugation action can be “locally” factored through a fp
quotient and the schematic image stabilizes when passing from local subspaces of LG to
the whole LG. This leads to the schematic definition of LGO. One defines LGO as the
complement of the smaller closed strata. Finally we check that the the open part does not
depend on the choice of wO, which implies that the closed stratum is also independent of
wO.

0.4. Decomposition of D(LGLG). At this point it is important to discuss the sheaf theory
considered in this paper. There are many obstacles to defining a good enough sheaf theory
on the stack LG

LG . The first is that LG itself is not an ind-scheme of finite type. Thus, one
needs to consider sheaves on scheme not of finite type. However, one can present LG as a
filtered colimit of placid schemes, these are schemes possibly of infinite type on which one
still has a good theory of sheaves. The notion of placid scheme was previously considered
in [33, 7], but their definition is not enough for the sheaf formalism that we need. The
definition of placid scheme we use is the more general notion introduced by Hemo and the
third author in [20]. The main point is that when restricted to placid stacks the sheaf theory
recovers some of the coherent six-functor formalism, that was lost on schemes not of finite
type.

The second problem is how to take the quotient of LG by itself. A sheaf theory on
the quotient LG

LG can be defined as the right Kan extension of sheaves on all schemes, i.e.

constructible sheaves on LG
LG are !-pullback compatible collections of sheaves on each scheme

mapping to it. In this set up one can have ∗-pushforward and !-pullback glueing for fp closed
embedding. However, to formulate a semi-orthogonal decomposition one wants to perform
!-pushforward and !-pullback glueing. This is achieved by restricting to placid stacks, i.e.
stacks that admit a cover by placid schemes. Then, the open-closed for the sheaf theory on
placid stacks, ind-placid stacks or sifted-placid stacks, reduces to the open-closed glueing of
sheaves on placid schemes, which has a ∗-pushforward and pullback and !-pushforward and
pullback open-closed glueing for finitely presented embeddings.

After the sheaf theory on LG
LG is established, we obtain our second main result, which is

a categorical version of Theorem 0.1:
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Theorem 0.2. One has a semi-orthogonal decomposition of D
(
LG
LG

)
indexed by W̆ � W̆ ,

whose strata is given by D
(
LGO
LG

)
.

The result Theorem 0.2 follows formally from Theorem 0.1. However, we notice that
since the set W̆ � W̆ is not totally ordered the notion of semi-orthogonal decomposition is
more subtle than usual definitions in the literature, e.g. [1]. In the appendix, we provide
a summary of the theory of stratifications (aka semi-orthogonal decompositions) of stable
∞-categories as developed in [3] but adapted to the context of constructible sheaves on
infinite-dimensional objects.

0.5. Categorical trace of affine Hecke category. Our last result is:

Theorem 0.3. Let Iw be the Iwahori group scheme determined by the choice of an Iwahori
subgroup of G. Consider the affine Hecke category D(Iw\LG/Iw).

(1) The categorical trace Tr(D(Iw\LG/Iw)) is a full subcategory of D
(
LG
LG

)
, generated under

colimits by the essential image of CH := p∗ ◦ q! from D(Iw\LG/Iw) to D
(
LG
LG

)
defined

via pull-push with respect to:

Iw\LG/Iw LG
Iw

q
oo

p
// LG
LG .

(2) There is a semi-orthogonal decomposition of Tr(D(Iw\LG/Iw)) indexed by W̆ � W̆ ,

whose strata is given by Tr(D(Iw\LG/Iw)) ∩ (iO)!

(
D
(
LGO
LG

))
, and is generated un-

der colimits by the restriction of CH to the subcategory D(Iw\LGw/Iw) for certain

elements w ∈ W̆ .

For the affine Hecke algebra H, it was proved in [17] that the cocenter H̄ has a stan-

dard basis {TO}, where O runs over conjugacy classes of W̃ . This leads to the Newton
decomposition of the cocenter of affine Hecke algebra

H̄ = ⊕H̄ν , where Hν is spanned by the image of Tw, for certain w ∈ W̃ .

Part (2) of Theorem gives a categorification of the above result. Our semi-orthogonal
decomposition is also a refinement of the decomposition obtained in [25]. In the case where
θ is the Frobenius automorphism, the analogue of Theorem 0.3 was obtained by Hemo and
the third author in [20].

To compute the categorical trace, one may apply a general theorem of Lurie’s that al-
lows one to concretely compute the colimit of a simplicial diagram of ∞-categories. The
procedure is to find an augmentation of the simplicial diagram such that all the connecting
functors in the augmented diagram admit coherent right adjoints. One way to actually
realize this strategy is to use geometry, namely to compute the so-called geometric trace
(cf. [20, §7]). In our situation, the augmentation is provided by the category D

(
LG
LG

)
and

the character functor CH = p∗q
! := D(Iw\LG/Iw)→ D

(
LG
LG

)
. However, to understand the

augmented diagram, we also need right adjoints to the functors q! and p∗. The functor q!

that causes problem, since its fibers are not representable.
Thus, we consider an ind-finite version of sheaves, i.e. ind-extension of constructible

sheaves on placid stacks, which are defined by descent on a cover by placid schemes (see
§1.5.3). In the context of ind-finite sheaves on LG

Iw and Iw\LG/Iw, one has an adjunction

(q!, qren∗ ) and the geometric trace of D(Iw\LG/Iw) agrees with the categorical trace. Finally
to prove part (2), we use the specifics of the definition of D (LGO) to check that the Newton



6 XUHUA HE, ARON HELEODORO, AND XINWEN ZHU

decomposition of D
(
LG
LG

)
is compatible with the cocenter Tr(H), and the (upgraded version

of) Deligne-Lusztig reduction on the sheaf in D
(
LG
LG

)
.

Acknowledgment: We thank Quoc P. Ho for explaining his paper [21] with P. Li,
especially the Beck-Chevalley condition on the categorical cocenter of the Hecke category.
XH is partially supported by the New Cornerstone Science Foundation through the New
Cornerstone Investigator Program and the Xplorer Prize.

1. Constructible sheaves

1.1. Conventions and notation.

(a) Let F denote a discretely valued (complete) local field, OF ⊂ F its ring of integers,
m ⊂ OF its maximal ideal and k := OF /m the residue field, which we assume is
algebraically closed.

(b) Let Pr denote the∞-category of presentable stable∞-categories with morphisms exact
functors. Let PrL (resp. PrR) denotes the subcategory of Pr where morphisms are
left (resp. right) adjoints. The category Pr has limits and colimits ([10, Chapter 1,
Corollary 5.3.4]) and PrL (resp. PrR) is closed under limits (resp. colimits). One has

an equivalence PrL
∼−→ (PrR)op given by passing to the right adjoints ([29, Corollary

5.5.3.4]).

(c) Colimits in PrL can be computed as follows. Given a small diagram C• : I → PrL, let
CR• : Iop → PrR ↪→ Pr denote the diagram obtained by passing to right adjoints. One

has colimI Ci
≃→ limIop CRi , where the colimit is taken in PrL and the limit in Pr ([10,

Chapter 1, Proposition 2.5.7] or [29, Corollary 5.5.3.4]).

(d) Let ℓ be a natural number coprime to the characteristic of k. The ring of coefficients E
for the sheaf theories that we consider in this article can be very general, for instance
we can consider E = Fℓ,Zℓ, or Qℓ ([20, §10.2.1] for the detailed assumptions). For a
choice of E we let ModE be the derived ∞-category of complexes of E-modules.

(e) The Lurie tensor product ([28, §4.8.1]) endows PrL with the structure of a symmetric
monoidal ∞-category. The stable ∞-category ModE is a commutative algebra object
in PrL ([28, Theorem 4.5.2.1 and Theorem 7.1.2.13]).

(f) Let LincatE denote the ∞-category of ModE-modules in PrL. We also let Lincatc.g.E
denote the subcategory of LincatE whose objects are compactly generated∞-categories
and morphism are compact object preserving functors.

(g) We also need the small variant of (f). Let LincatperfE denote the ∞-category of small
idempotent complete E-linear stable ∞-categories with morphisms exact functors.

(h) The contexts (f) and (g) are related via the equivalence

Ind : LincatperfE Lincatc.g.E : (−)ω ,

where Ind is the construction of formally adding all filtered colimits and (−)ω passes
to the subcategory of compact objects.

(i) One has self-dualities Lincatc.g.E
∼−→ Lincatc.g.E sending C to C∨ and similarly LincatperfE

∼−→
LincatperfE sending C0 to Cop0 . These are related by (h), given C0 ∈ LincatperfE one has

Ind(C0)∨
∼−→ Ind(Cop0 ).
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(j) When we have a pair of functors between two categories, unless otherwise stated we
will always write the left adjoint functors on top of the right adjoint.

(k) Given a commutative diagram of ∞-categories:

(1.1)
C′ D′

C D

F ′

GC GD

F

we will say (1.1) is horizontally left (resp. right) adjointable if F ′ and F admit left

(resp. right) adjoints (F ′)L and FL (resp. F
′ R and FR) and the canonical morphism:

FL ◦GD −→ GC ◦ (F ′)L
(
resp. GC ◦ (F ′)R −→ FR ◦GD

)
is an equivalence. We will say that (1.1) is vertically left (resp. right) adjointable if the
transposed diagram is horizontally left (resp. right) adjointable.

1.2. Review of geometric objects. In this subsection, we review some algebro-geometric
objects on which we will consider the theory of constructible ℓ-adic sheaves.

1.2.1. Prestacks. Let Aff be the category of (classical) affine k-schemes. Let Sch denote the
category of quasi-compact quasi-separated (qcqs) k-schemes and Schft the full subcategory
of schemes of finite type. Let AlgSpc denote the category of qcqs algebraic spaces and
AlgSpcft the full subcategory of algebraic spaces of finite type.

A prestack is an accessible functor X : Affop → Spc from the opposite of the category of
affine schemes to the ∞-category of anima. We let PStk denote the category of prestacks.
A stack is a prestack that satisfies descent with respect to the étale topology on affine
schemes. A k-space is a stack X such that for every affine scheme S, the space X (S) is
discrete, i.e., all its positive homotopy groups vanish.

Let f : X → Y be a morphism between prestacks. We say that f is affine (resp.
schematic, representable, open, closed, locally closed) if for every S → Y , where S is an
affine scheme, the base change X ×

Y
S is an affine scheme (resp. qcqs scheme, qcqs algebraic

space, an open embedding, a closed embedding, a locally closed embedding)1. We say that
f is fp-affine (resp. fp-schematic, fp-representable, fp-open, fp-closed, fp-locally closed) if in
addition X ×

Y
S → S is finitely presented.

1.2.2. Ind-schemes. A k-space X is said to be an ind-scheme (resp. ind-algebraic space) if

it admits a presentation colimI Xi
∼−→ X , where I is a filtered diagram, each Xi is a qcqs

scheme (resp. qcqs algebraic space), and for each i→ j the morphism Xi → Xj is a finitely
presented closed embedding2.

An ind-scheme (resp. ind-algebraic space) X ≃ colimI Xi is said to be ind-fp if each
Xi ∈ Schft (resp. AlgSpcft). An ind-scheme (resp. ind-algebraic space) X ≃ colimI Xi is
said to be ind-fp-proper if each Xi is proper.

Similarly to §1.2.1, we say that a morphism f : X → Y between prestacks is ind-
schematic (resp. ind-representable) if for every S → Y where S is an affine scheme the base

1Note that as we impose the qcqs condition, the notion of schematic (resp. representable) morphisms
considered in this article is slightly more restrictive than the same named notion in literature.

2These are known as reasonable ind-schemes (or ind-algebraic spaces) (e.g. [33, §6.7]) and are more
restrictive than general ind-schemes (or ind-algebraic spaces), but they will be enough for our purposes.
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change X ×
Y
S is an ind-scheme (resp. ind-algebraic space). Furthermore, an ind-schematic

or ind-representable morphism f : X → Y is ind-fp (resp. ind-fp-proper) if every fiber
X ×

Y
S is ind-fp (resp. ind-fp-proper).

1.2.3. Variant: Perfect geometry. In the mixed case, i.e. F has characteristic 0 and char k =
p we have the following variation of the previous geometric objects (see [37, §A.1]).

Let Affperf denote the opposite of the category of perfect k-algebras. In this setting a
perfect prestack is a functor X : Affperf → Spc and a perfect k-space is stack with respect
to the fpqc topology. The restriction along Affperf,op ↪→ Affop gives a functor

(−)perf : Fun(Affop, Spc) −→ Fun(Affperf,op, Spc)

called the perfection functor.
Following [36, Appendix A], we let Schperf denote the category of qc qs perfect k-schemes,

i.e. perfect k-spaces that satisfy Zariski descent and admit a Zariski atlas. We let AlgSpcperf

denote the category of qc qs perfect algebraic spaces, i.e. perfect k-spaces that satisfy
étale descent, have (perfect) schematic diagonal and admit an étale surjection from a per-

fect scheme. By [37, Lemma A.12] the composition Schperf ↪→ Sch
(−)perf→ Schperf (resp.

AlgSpcperf ↪→ AlgSpc
(−)perf→ AlgSpcperf) is an equivalence, where Schperf (resp. AlgSpcperf)

is the subcategory of k-schemes (resp. algebraic spaces)X such that the Frobenius morphism

ϕX : X
∼−→ X is an isomorphism. Implicitly using this equivalence we let:

(1.2) ıperf : Sch
perf ↪→ Sch ıperf : AlgSpc

perf ↪→ AlgSpc

denote the inclusion of perfect qc qs schemes (resp. algebraic spaces) into qc qs schemes
(resp. algebraic spaces). One has adjunctions (ıperf , (−)perf).

Recall a morphism f : S → T between perfect affine schemes is said to be perfectly
finitely presented, if there exist f̃ : S̃ → T̃ a finitely presented morphism between affine
schemes, such that f̃perf = f . Thus, we have the definitions completely analogous to §1.2.1
and §1.2.2 by replacing finitely presented (fp) everywhere by perfectly fintiely presented
(pfp).

1.3. Sheaf formalism: general setup. The amount of data encoded by the different
sheaf formalisms that we need in this article can be understood in three instances:

(1) a 3-functor formalism on the most general geometric objects, e.g. sheaves on prestacks
with arbitrary !-pullback, and ∗-pushforward for representable ind-fp morphisms;

(2) a 3-functor formalism on sifted placid stacks where one has left adjoints for !-pullback
along representable ind-fp morphisms and left adjoints for ∗-pushfoward along repre-
sentable fp morphisms;

(3) a 3-functor formalism on ind-placid stacks where one has right adjoints to !-pullbacks
with respect to certain non-representable morphisms (weakly cohomologically pro-smooth)
with enough base change.

1.3.1. 3-functor formalism. Now we introduce a couple of abstract definitions to conve-
niently express the iterations of the sheaf formalisms and perform the extension steps that
we need. Let C be a category of geometric objects, e.g. C = Schft or C = PStk.
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Definition 1.1. Let C be a category and consider two classes of morphisms El, Er, such
that pullbacks of the form (1.6) exists, whenever gY ∈ Er and f ∈ El. We also assume that
El and Er contain all isomorphisms and are stable under compositions and pullback. The
category Corr(C)El;Er has as:

• objects the same as objects in C;

• morphisms X ⇝ Y given by correspondences X
f←− Z

g−→ Y , where f ∈ El and g ∈ Er.

The composition of morphisms is given by taking pullbacks. Notice that the conditions on El

and Er guarantee that we have identity morphisms and that compositions are well-defined.
When we take El = Er to contain all morphisms of C we write Corr(C).

We also assume that C admits finite products, thus one has a (Cartesian) symmetric
monoidal structure on C which induces a symmetric monoidal structure on Corr(C).

Following [10, Chapter 5, Introduction], [34, Definition 3.1] and [31, Definition A.5.7] we
make the following:

Definition 1.2. A 3-functor formalism on C is a lax symmetric monoidal functor

(1.3) D : Corr(C)El,Er −→ Lincat?E ,

where ? ∈ {∅, c.g.,Perf}.
Concretely, this encodes the following data:

• for every Y
f←− X

idX−→ X with f ∈ El a !-pullback functor f ! : D(Y )→ D(X);

• for every X
idX←− X

g−→ Y with g ∈ Er a ∗-pushforward functor g∗ : D(X)→ D(Y );

• for every X ∈ C an exterior tensor product ⊠ : D(X)⊗D(X)→ D(X ×X).

Notice that for every X ∈ C such that ∆X : X → X ×X belongs to El, we have a tensor

product (−)⊗ (−) : D(X)⊗D(X)
⊠−→ D(X ×X)

∆!
X−→ D(X).

1.3.2. Extra adjunctions. The formalism encoded in Definition 1.2 is neat but we need
two extra things: (1) explicit relations between f∗ and f ! in certain situations, this is
relevant both in constructing such formalism but it also encodes the open-closed gluing
exact sequences and (2) we will need left adjoints for f ! and g∗ in certain situations with
enough base change properties. Thus, we introduce the following concepts.

Definition 1.3. Let D : Corr(C)El,Er → Lincat?E be a 3-functor formalism.

(1) A class of weakly stable morphisms EL
l ⊂ El is said to be left-adjointable if for every

f : X → Y ∈ ER
l the functor f ! admits a left adjoint f†. Moreover, we say that EL

l

(i) is compatible with EBC
l ⊂ El base change if (f ′)†◦g!X

∼−→ g!Y ◦f† for every gY ∈ EBC
l ;

(ii) is compatible with EPC
r ⊂ Er pushforward if f† ◦ (gX)∗

∼−→ (gY )∗ ◦ f ′† for every

gY ∈ EPC
r ;

(iii) satisfies projection formula if f†(F ⊗ f !(G ))
∼−→ f†(F )⊗ G for every F ∈ D(X)

and G ∈ D(Y ).

(2) A class of weakly stable morphisms EL
r ⊂ Er is said to be left-adjointable if for every

f : X → Y ∈ EL
r the functor f∗ admits a left adjoint f⋆. Moreover, we say that EL

r

(i) is compatible with EBC
r ⊂ Er base change if f⋆ ◦ (gY )∗

∼−→ (gX)∗ ◦ (f ′)⋆ for every
gY ∈ EBC

r ;

(ii) is compatible with EPC
l ⊂ El pullback if (f ′)⋆ ◦ g!Y

∼−→ g!X ◦ f⋆ for every gY ∈ EPC
l ;
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(iii) satisfies projection formula if f∗(F )⊗ G
∼−→ f∗(F ⊗ f⋆(G )) for every F ∈ D(X)

and G ∈ D(Y ).

Remark 1.4. (1) In Definition 1.3 (1) we say that EL
l ⊂ El is internally left-adjointable,

if (f∗, f
!) is an adjunction. Notice that given EL,1

l ⊂ El internally left-adjointable

and EL,2 ⊂ El left adjointable we obtain an isomorphism f†
∼−→ f∗

3, whenever f ∈
EL,1

l ∩ EL,2
l . We have a similar notion for Definition 1.3 (2) with f⋆ ∼−→ f !.

(2) In Definition 1.3 (1) if EBC
l = El or E

PC
r = Er we will omit the mention of compatibility

with base change or pushforward. In particular, if EBC
l = El and EPC

r = Er we will

simply say that the class EL
l is nicely left adjointable. Similarly for Definition 1.3 (2) if

EBC
r = Er and/or EPC

l = El.

(3) Notice that when (X
∆X→ X × X) ∈ El ∩ Er and (X

πX→ pt) ∈ El ∩ Er, then X ∈
Corr(C)El,Er is self-dual, namely the morphisms X × X

∆X←− X
πX−→ pt and pt

πX←−
X

∆X−→ X × X exhibit X ≃ X∨. Moreover, if ⊠ : D(X) ⊗ D(X)
∼−→ D(X × X), then

D(X) is self-dual, with counit and unit given by the functors

D(X)⊗D(X) D(X ×X) D(X) D(pt)⊠ ∆!
X (πX)∗

and

D(pt) D(X) D(X ×X) D(X)⊗D(X),
π!
X (∆X)∗ ⊠R

where ⊠R is the right adjoint of ⊠. In particular, in this caseD(X) is a closed symmetric
monoidal category.

(4) Given a 3-functor formalism D : Corr(C)El,Er → LincatE such that EL
l = El and

EL
r = Er are left-adjointable, then the assignment D : Corr(C)El,Er → LincatE sending

X
f←− Z

g−→ Y to D(X)
g†◦f⋆

−→ D(Y ) is a 6-functor formalism in the sense of [34,
Definition 2.5].

Definition 1.5. Let D : Corr(C)El,Er → Lincat?E be a 3-functor formalism. A class of

weakly stable morphisms ER
l ⊂ El is said to be right-adjointable if for every f : X → Y ∈

ER
l the functor f ! admits a right adjoint4 f⋆. Moreover, we say that ER

l

(i) is compatible with EBC
l ⊂ El base change if (gY )

! ◦ f⋆
∼−→ (f ′)⋆ ◦ (gX)! for every

gY ∈ EBC
l ;

(ii) is compatible with EPC
r ⊂ Er pushforward if (gY )∗ ◦ (f ′)⋆

∼−→ f⋆ ◦ (gX)∗ for every
gY ∈ EPC

r .

(iii) satisfies projection formula if f⋆(F )⊗ G
∼−→ f⋆(F ⊗ f !(G )) for every F ∈ D(X) and

G ∈ D(Y ).

For a 3-functor formalism with values in LincatperfE we don’t require the right adjoint to
be continuous. Whereas for a 3-functor formalism with values in Lincatc.g.E we have that f⋆

3Here the morphism is induced by the co-unit of (f∗, f
!), but we also have an equivalence in the other

direction induced by the co-unit of (f†, f
!).

4In the category where the sheaf theory takes values. In particular, we require that the right adjoint is
continuous if ? = ∅ or c.g..
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is continuous if and only if f ! preserves compact objects. We make also formulate what it
means for a weakly stable class ER

r ⊂ Er to be right-adjointable, but we won’t need that.

Remark 1.6. (1) As in Remark 1.4 (1) we say that a morphism (X
f→ Y ) ∈ ER

r ⊂ Er is
internally right adjointable if (f∗, f

!) is an adjunction. Similarly, ER
l ⊂ El is internally

right adjointable if (f !, f∗) is an adjunction.

(2) In practice, when constructing a 3-functor formalism, the functors f∗ : D(X) → D(Y )

and f ! : D(Y )→ D(X) assigned to a morphism (X
f→ Y ) are not completely indepen-

dent. One often starts from a functor f ! : D(Y )→ D(X) defined for all (X
f→ Y ) ∈ El

and check that it is left adjointable for a certain class EL
l and right adjointable for a

certain class ER
l . That these adjoints can be combined to give a well-defined pushfor-

ward is the content of many sheaf extension results, see for example [20, §8.2.5] or [31,
Proposition A.5.10].

1.4. Sheaves on placid schemes. This section reviews how to construct from the litera-
ture a sheaf formalism of ind-constructible ℓ-adic sheaves on qc qs schemes. At this level of
generality this sheaf theory is only a 3-functor formalism, but it allows us to define the no-
tion of cohomologically smoothness. Using cohomological smoothness we cut a subcategory
of qcqs schemes, namely placid schemes and check that the restriction of the sheaf theory
to this category yields a 6-functor formalism.

1.4.1. Sheaves on qcqs algebraic spaces of finite type. We assume that k is a finite field or an
algebraically closed field. To any qcqs algebraic spaceX of finite type over k we associate the
small stable∞-category Dc(X,E) of ℓ-adic sheaves on X with values on ModE . Concretely,
one takes [27, Notation 2.2.3] as a definition for E = Fℓ and use [26, §0.1] to extend it to
E = Zℓ and E = Qℓ (see also [20, §10.2.1]). The constructions in the remainder of this
section (except for §1.4.3) are independent of the coefficient E, so we will often omit it from
the notation.

The category of (ind-constructible) sheaves5 on a qcqs algebraic space of finite type X is
defined as D(X) := Ind(Dc(X)), i.e. the category obtained by formally adjoining all filtered
colimits to Dc(X).

The stable ∞-categories Dc(X) and D(X) have as underlying homotopy categories the
classical triangulated categories of constructible and all ℓ-adic sheaves, respectively. If we
were only interested in algebraic spaces of finite type the classical construction of these
triangulated categories would have be enough. However, to extend extend the formalism
to algebraic spaces not necessarily of finite type and to prestacks, there is no simple way of
correctly defining these categories. For instace, two problems are descent for triangulated
categories does not work well (see [27, §0.2] for a nice discussion of this issue) and the correct
sheaves on prestacks not necesarrily of finite type are limits and colimits of categories, which
also don’t behave well for triangulated categories.

We emphasize that the sheaf formalism as developed always comes in two variants:

• Dc(X) ∈ LincatperfE a small idempotent complete linear stable∞-category of constructible
sheaves, and

5Concretely speaking the objects of this ∞-category are (unbounded) complexes of sheaves (with possibly
infinite-dimensional cohomology) up to homotopy, we follow the convention of referring to them simply as
sheaves.
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• D(X) ∈ Lincatc.g.E a presentable linear stable ∞-category of ind-constructible sheaves6.

For the rest of this subsection we write write D−(X) for either Dc(X) or D(X).
Given any morphism f : X → Y between qcqs algebraic spaces of finite type one has

adjunctions ([27, §6.2] and [26, §0.1]):

(1.4) f∗ : D−(Y ) D−(X) : f∗ and f! : D−(X) D−(Y ) : f ! ,

and compatibility isomorphisms: f!
∼−→ f∗ when f is proper and f∗

∼−→ f ! when f is étale.
There is also an adjunction given by the sheaf tensor and sheaf inner-hom, i.e. for every
F ∈ D−(X) one has an adjunction:

(1.5) (−)⊗F : D−(X) D−(X) : H om(F ,−) .

The functors (f∗, f∗), (f!, f
!), ((−) ⊗ F ,H om(F ,−)) are first constructed for the con-

structible categories and then ind-extended. In this formulation, the preservation of con-
structibility holds by construction. Here are some of the compatibilities between the six
functors above:

• given a pullback diagram:

(1.6)

X ′ X

Y ′ Y

gX

f ′ f

gY

one has an equivalence: (gX)∗ ◦ f ! ∼−→ (f ′)! ◦ (gY )∗.
• for any X ∈ AlgSpcft the category D(X) (resp. Dc(X)) is a commutative algebra in

Lincatc.g.E (resp. LincatperfE ). Any morphism f : X → Y induces a map of D−(Y )-modules
f∗ : D−(X)→ D−(Y ). Concretely, this gives the projection formula:

(1.7) f∗(F ⊗ f !(G ))
∼−→ f∗(F )⊗ G

for every F ∈ D−(X) and G ∈ D−(Y ). In particular, when applied to the unit of the
adjunction (f∗, f∗) one obtains:

(1.8) f∗(F ⊗ G ) −→ f∗(F )⊗ f !(G ).

The data of the functors (1.4) and (1.5) satisfying base change and projection formulas
determines 6-functor formalisms:

(1.9) Dc : Corr(AlgSpcft) −→ LincatperfE and D : Corr(AlgSpcft) −→ Lincatc.g.E

that sends X
f←− Z

g−→ Y to g∗ ◦ f ! : D−(X)→ D−(Y ).

1.4.2. Sheaves on qc qs algebraic spaces. In this subsection, we extend (1.9) to qc qs alge-
braic spaces. This is inspired by [7, §5] and [33, §3 and §6], but we follow the construction
of [20, §10].

Let Dc : AlgSpcopft → LincatE denote the restriction of (1.9), to the subcategory of

Corr(AlgSpcft) generated by the correspondences X ←− Y
idY−→ Y , where X,Y ∈ AlgSpcft.

We consider:

(1.10) LKEAlgSpcft↪→AlgSpc(Dc) : AlgSpc
op −→ LincatperfE

6Though, in some cases these will not be compactly generated.
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the left Kan extension via the inclusion of schemes of finite type into all qc qs schemes.
Consider Corr(AlgSpc)all;fp the category of correspondences whose objects are qcqs al-

gebraic spaces and morphism are correspondences X
f←− Z

g−→ Y , where g is finitely
presented. By [19, Theorem 10.15] one has an extension of (1.10) to a 3-functor formalism:

(1.11) Dc : Corr(AlgSpc)all;fp −→ LincatperfE .

We then let

(1.12) D : Corr(AlgSpc)all;fp −→ Lincatc.g.E

be the Ind-extension of (1.11).
We stress that the theory (1.12) is different than directly defining étale sheaves on qcqs

schemes following §1.4.1. Indeed, for X = SpecK where K is a field over k the category
defined in this section for finite coefficients recovers representations of Gal(K/k) which are
filtered colimits of finitely generated smooth representations, whereas the later option would
consider all representations. We refer to [20, Example 10.23] for details.

1.4.3. Cohomological smoothness. In this section we need to pass to a dual sheaf theory.
Let

(1.13) D∗(−,Fℓ) : Corr(AlgSpc)all;fp −→ Lincatc.g.E

denote the sheaf theory obtained by composing (1.12) with the duality Lincatc.g.E
∼−→ Lincatc.g.E .

By §1.1 (i) this is concretely given by D∗(X,Fℓ) ≃ Ind(Dc(X,Fℓ)
op). The functor (1.13)

sends a correspondence X
f←− Z

g−→ Y to the conjugates functors (see [20, §7.2.2] for a
definition) (f !)◦ : D∗(X,Fℓ) → D∗(Z,Fℓ) and (g∗)

◦ : D∗(Z,Fℓ) → D∗(Y,Fℓ) of f ! and g∗,
respectively.

Let ((f !)◦, f†) and ((g∗)
◦, g⋆) denote the adjunctions, where g is finitely presented. The

restriction of (1.12) to algebraic spaces of finite type recovers the usual 6-functor formalism.
Verdier duality allows us to identify these pair of adjunctions with (f∗, f∗) and (g!, g

!), since
(f !)◦ is the Ind-extension of f∗ (see [20, §10.4.1] for more details). For the rest of this
subsection we use the later notation; but we warn the reader that this is different than the
notation outside this subsection.

Let f : X → Y be a finitely presented morphism and consider the diagram:

X ×
Y
X X

X Y

p2

p1
f

f

the unit of the adjunction (f∗, f∗) gives a map f !(ωY ) → f ! ◦ f∗ ◦ f !(ωY ), by base change
and using the adjunction (p∗2, p2,∗) we obtain:

(1.14) p∗2 ◦ f !(ωY ) −→ p!1 ◦ f∗(ωY ).

Notice that here the functors f∗ and p∗2 exist without any further assumption because we
are considering the sheaf theories obtained by applying D∗(−,Fℓ), but they a priori do not
preserve compact objects.

Definition 1.7. A morphism f : X → Y in AlgSpc is cohomologically smooth if it satisfies:

(i) f is ULA, i.e. f is fp and the canonical map (1.14) is an isomorphism.
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(ii) f∗(ωY ) is an invertible object of D∗(X,Fℓ).

Remark 1.8. (1) Any étale morphism f : X → Y is cohomologically smooth since f∗
∼−→

f !.

(2) For any n ≥ 0 and projection f : An
Y → Y we have f∗ωY

∼−→ ωAn
Y
⟨n⟩.

(3) By [35, Lemma 054L] (1) and (2) imply that any smooth morphism is cohomologically
smooth and similarly that any perfectly smooth morphisms (see [19, Definition 10.4] for
this notion) between perfect algebraic spaces is also cohomologically smooth.

(4) Given any field K over k, f : X → SpecK is cohomologically smooth if and only if
f !Qℓ,SpecK

∣∣
Xi
≃ Qℓ,Xi

⟨di⟩, where di = dimXi and Xi is an irreducible component of

X. One can refer to this condition as rationally smooth (cf. [8, §1.1 Definition] in the
case where char k = 0). This also shows how cohomologically smooth is strictly more
general than smoothness.

(5) For f : X → Y cohomologically smooth one has

(1.15) ωX ⟨df ⟩
∼−→ f∗ωY ,

where df is the relative cohomological dimension of f (see [20, §10.3.3] for a precise
definition) and ⟨df ⟩ represents the cohomological and Tate twist by df . This result is a
bit subtle to prove and follows a density argument, see [20, Proposition 10.45].

(6) By [20, Remark 8.33], the heuristic for Defintion 1.7 is that the notion of dualizability
of D∗(X,Fℓ) as a D∗(pt,Fℓ)-module category is too strict, this is equivalent to requiring
that X is finitely presented and that the exterior tensor product of the sheaf theory
is an equivalence, which does not hold in general. Whereas the condition that X is
dualizable in Corr(AlgSpc)all;fp simply imposes that X is finitely presented which is
too weak. The correct notion turns out to be to require that (X,ωX) is dualizable in
the category of cohomological correspondences as defined in [34, Lecture V].

1.4.4. Placid algebraic spaces. Let f : X → Y be a morphism in AlgSpc we say that:

(a) f is cohomologically pro-smooth if there is a presentation X
∼−→ limI Xi as a cofiltered

limit where: each Xi → Xj is cohomologically smooth affine and each Xi → Y is
cohomologically smooth;

(b) f is strongly cohomologically pro-smooth if in addition to ((a)) the structure morphisms
Xi → Xj are surjective;

(c) f is weakly cohomologically pro-smooth if there is a surjective cohomologically pro-
smooth map U → X, such that the composite U → X → Y is cohomologically
pro-smooth;

(d) f is essentially cohomologically pro-smooth if there is a factorization X → X ′ → Y
where X → X ′ is cohomologically pro-smooth and X ′ → Y is finitely presented.

A qcqs algebraic space X ∈ AlgSpc is said to be placid if the morphism X → Spec k is
essentially cohomologically pro-smooth. We let AlgSpcpl ↪→ AlgSpc denote the subcategory
of placid schemes.

More generally, given f : X → Y a morphism in PStk we say that:

(d) f is (resp.strongly, essentially) cohomologically pro-smooth if for every affine scheme
S → Y the fiber product S ×

Y
X is a qcqs algebraic space and the induced morphism

S ×
Y

X → S is (resp. strongly, essentially) cohomologically pro-smooth;

https://stacks.math.columbia.edu/tag/054L


15

(e) f is weakly cohomologically pro-smooth if for every affine scheme S → Y there is a
jointly surjective family {Ti → S ×

Y
X }I with Ti ∈ AlgSpc where each composite

Ti → S ×
Y

X → S is cohomologically pro-smooth.

1.4.5. Sheaves on placid algebraic spaces. Let AlgSpcpl ↪→ AlgSpc denote the subcategory
of placid algebraic spaces. We have:

Proposition 1.9. [20, Proposition 10.69] The restriction of (1.12) to:

(1.16) D : Corr(AlgSpcpl)fp;fp −→ Lincatc.g.E

gives a 3-functor formalism on placid algebraic spaces, such that:

(i) the class Eet ⊂ Er of étale morphism is internally left adjointable and the class
Ep ⊂ El of fp proper morphisms is internally left adjointable;

(ii) the class (X
f→ Y ) ∈ Efp ⊂ Er of finitely presented morphisms is left adjointable with

adjoint f∗ compatible with weakly cohomologically pro-smooth pullbacks;

(iii) the class (X
f→ Y ) ∈ Efp ⊂ El of finitely presented morphisms is left adjointable with

adjoint f! compatible with weakly cohomologically pro-smooth pullbacks.

Moreover, the left adjoints of (ii-iv) preserve compact, i.e. constructible, objects.

Here is an heuristic of why this works, we refer the reader to [20, Proposition 10.69] for
details. Consider f : X → Y a finitely presented morphism between placid algebraic spaces,
then we can find Y

∼−→ limI Yi a placid presentation of Y such that for some i ∈ I one has
a pullback diagram:

X Y

Xi Yi

f

fi

,

where Xi := Yi ×
Y
X. Thus, to produce a left adjoit to f∗ : D(X) → D(Y ) it is enough to

check that the diagrams:

D(Xi+1) D(Yi+1)

D(Xi) D(Yi)

(fi+1)∗

(fi)∗

(aXi+1,i)
! (aYi+1,i)

!

are horizontally left adjointable. Indeed, by (1.15) the canonical map:

(fi+1)
∗ ◦ (aYi+1,i)

∗ ⟨di+1,i⟩ ≃ (fi+1)
∗ ◦ (aYi+1,i)

! −→ (aXi+1,i)
! ◦ (fi)∗ ≃ (aXi+1,i)

∗ ⟨di+1,i⟩ ◦ (fi)∗

is an isomorphism, since aXi+1,i and aYi+1,i are cohomologically smooth of same relative di-

mension. A similar argument proves that f ! : D(Y )→ D(X) has a left adjoint for f finitely
presented.

The arguments for base change are a bit more involved but follow the same logic. This is
proved in the context of sheaves on perfect qcqs algebraic spaces in [20, Proposition 10.69]
by constructing a 6-functor ∗-theory and passing to the dual categories.
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1.4.6. Variant: Sheaves on perfect qcqs algebraic spaces. The sheaf formalisms of this section
will equally apply to the context of perfect geometry. More precisely, by restricting (1.12) to

the subcategory AlgSpcperf via (1.2) we obtain a 3-functor formalism. Further restricting

it to the subcategory AlgSpcperfpl of placid perfect algebraic spaces we obtain a 3-functor

formalism

(1.17) D : Corr(AlgSpcperfpl )pfp;pfp −→ Lincatc.g.E

that satisfies the same conditions as in Proposition 1.9 but with perfectly finitely presented
morphisms in place of finitely presented morphisms.

Notation 1.10. In the remaining subsections of this section the extensions of the sheaf
theory will come in two versions: one for non-perfect objects and the other for perfect
objects; the only difference is that for perfect objects one should always consider perfectly
finitely presented instead of the more strict finitely presented. All the arguments are for-
mally the same except for this difference. Thus, we will use PStk, AlgSpc, AlgSpcpl and any
other further decoration introduced below to either mean the non-perfect or perfect ver-
sion of these objects, for instance fp should be read perfectly finitely presented or finitely
presented depending on the context.

1.5. Sheaves on sifted-placid stacks. In extending the sheaf theory to prestacks or a
subcategory of nice geometry objects, one encounters the problem that compact objects are
scarse for the naive definition. In other words, the small and large categories versions of
sheaf theory encoded in (1.11) and (1.12) are not compatible when extended to prestacks.
This is similar to the problem with ind-coherent sheaves vs quasi-coherent sheaves, except
here the more natural object is ind-coherent sheaves as opposed to quasi-coherent.

1.5.1. Sheaves on prestacks. Before extending the sheaf theory to the objects we are in-
terested in this article, we need a 3-functor formalism on prestacks to formulate certain
conditions.

We define a sheaf theory on prestacks:

(1.18) D : Corr(PStk)all;fp −→ LincatE

by taking the right Kan extension of the functor (1.12) via the inclusion Corr(AlgSpc)all;fp ↪→
Corr(PStk)all;fp.

In fact, by [20, Theorem 10.91] we have an further extension of (1.18):

(1.19) D : Corr(PStk)all;ind−fp −→ LincatE ,

where we allow ∗-pushforward for any ind-fp morphism. This construction happens in two
steps. First, one extends (1.12) to the category of ind-algebraic spaces IndAlgSch

(1.20) D : Corr(IndAlgSch)all;ind−fp −→ LincatE ,

using an argument similar to that in §1.5.4. Second, one takes the right Kan extension of
(1.20) via the inclusion Corr(IndAlgSch)all;ind−fp ↪→ Corr(PStk)all;ind−fp using [10, Chapter
8, Theorem 6.1.5] or [19, Proposition 8.43].

For the 3-functor formalism (1.19) has representable étale morphism as internally left
adjointable in Er, i.e. (f

!, f∗) is an adjuncion, and representable fp proper morphisms as
internally left adjointable morphisms in El, i.e. (f∗, f

!) is adjunction in this case. In partic-
ular, we obtain that given ı : Z ↪→X a fp closed embedding and ȷ : U ↪→X is qcqs open
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complement one has a half-recollement:

D(U ) D(X ) D(Z ).

ȷ∗

ȷ!

ı!

ı∗

This is enough to glue individual sheaves, since for any F ∈ D(X ) we obtain:

ı∗ ◦ ı!(F ) −→ F −→ ȷ∗ ◦ ȷ!(F ).

However, we can’t glue the whole category D(X ) from D(U ) and D(Z ) since this requires
a left adjoint to ı∗. In the next subsection we will remind this by restricting the sheaf
theory to well-behaved colimits of stacks such that we have this further left adjoint to
finitely presented inclusions.

1.5.2. Sifted-placid stacks. Before proceeding with the construction of the sheaf formalism
we need to introduce the type of geometric objects on which this sheaf theory will behave
nicely. The following is a summary of [20, §10.5.1 and §10.6.1] to which we refer the reader
for more details and slightly more general notions that might be useful in future directions.

Definition 1.11. Let X ∈ PStk be an étale sheaf. We will say that X is:

(a) a placid stack if there exist a placid atlas hX : U → X , i.e. a placid algebraic space
U and a representable strongly cohomology smooth morphism hX such that

(1.21) D(X )
∼−→ limD((U/X )•),

where (U/X )• is the Cech nerve of hX .

(b) an ind-placid stack if there exists a presentation colimI Xi
∼−→ X , where each Xi is a

placid stack and Xi ↪→Xj are finitely presented morphisms.

(c) a sifted-placid stack if it admits a sifted-placid atlas, i.e. there exist Y an ind-placid
stack and hX : Y →X a surjective ind-fp proper morphism.

Remark 1.12. Given a geometric context, the usual definition of a stack would only require
that U → X is a cover for the étale (or fpqc) topology. However, the sheaf theory we
consider in this article does not have descent in this generality, so we impose (1.21) in
the definition. We notice that if f : U → X is ind-fp proper or representable essentially
cohomologically pro-smooth, then (1.21) automatically holds (see [20, Proposition 10.99
and Proposition 10.101]).

Remark 1.13. (1) Any Artin stack of finite presentation (or its perfection) is a placid
stack over k.

(2) Let H
∼−→ limI Hi be affine group scheme, where each Hi is a reduced (perfectly) finite

type group scheme and Hi → Hj are (perfectly) smooth affine morphisms. Given X a
placid scheme, then the étale quotient stack X/H is a placid stack.

(3) Given X → Z an ind-fp (resp. proper) morphism of étale stacks such that Z is a

placid stack, then X is an ind-placid stack with a presentaiton colimI Xi
∼−→ X such

that Xi → X → Z is fp (resp. proper). This result is [20, Lemma 10.142] and is
crucial to prove certain results for the sheaf theory on sifted-placid stacks below.

(4) Given Y an ind-placid stack and H an ind-placid group stack which acts on Y via
ind-fp proper morphisms, then X ≃ Y /H is a sifted-placid stack.
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1.5.3. Ind-finite sheaves on placid stacks. The starting point for a good theory of sheaves
on placid stacks is the constructible 3-functor formalism from (1.11). Let Stkpl denote the
category of placid stacks, we have an extension:

(1.22) Dc : Corr(Stkpl)all;fp −→ LincatperfE

given by right Kan extension via Corr(AlgSpc)all;fp ↪→ Corr(Stkpl)all;fp. We take the Ind-
completion of (1.22) to define:

(1.23) Dind−fin. : Corr(Stkpl)all;fp −→ Lincatc.g.E .

This sheaf theory is refered to as renormalized in [2, Appendix F.5] and [21]. We will refer
to it as ind-finite.

Notice that by construction we have

(1.24) Dc(X )
∼−→ limDc((U/X )•),

where U →X is a placid atlas. We have

Proposition 1.14. Let Ew.c.p.s. ⊂ El denote the class of weakly cohomologically pro-smooth
morphisms. The 3-functor formalism of (1.23) satisfies:

(i) the class Eet ⊂ Er of representable étale morphisms is internally left adjointable and
the class Ep ⊂ El of representable fp proper morphism is internally left adjointable;

(ii) the class Efp ⊂ El of representable fp morphisms is left adjointable with Ew.c.p.s.

compatible base change;

(iii) the class Efp ⊂ Er of finitely presented morphisms is left adjointable with Ew.c.p.s.

compatible base change.

The proposition is proved by reducing using descent to reduce to Proposition 1.9. See
[20, Proposition 10.114] for details.

Since the categories D(X ) have all colimits one has a natural functor:

Ψ : Dind−fin.(X ) −→ D(X )

but this is far from an equivalence. When X is a placid stack with a nice cover, then Ψ is
an equivalence after left completion (see [19, Lemma 10.123] for the precise statement).

1.5.4. Sheaves on ind-placid stacks. Let IndStkpl denote the category of ind-placid stacks.
We extend the theory (1.22) to:

(1.25) Dc : Corr(IndStkpl)all;fp −→ LincatperfE

by taking its right Kan extension via the inclusion Corr(Stkpl)all;fp ↪→ Corr(IndStkpl)all;fp.

Notice that for an ind-placid stack X given a presentation colimI Xi
∼−→X one has:

colim
I

Dc(Xi)
∼−→ Dc(X ).

We then consider

(1.26) Dind−fin. : Corr(IndStkpl)all;fp −→ Lincatc.g.E

by taking the Ind-extension of (1.25). The functor (1.26) admits an extension to:

(1.27) Dind−fin. : Corr(IndStkpl)all;ind−fp −→ Lincatc.g.E ,

whose restriction to Corr(IndStkpl)fp;fp satisfies an analogue of Proposition 1.14 (see [20,
Theorem 10.150 (2)]).
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The extension (1.27) is constructed in two steps (see [10, Chapter 8, Theorem 1.1.9] or
[19, Corollary 8.48]). The first extension D1 is determined by the following diagram:

Stkoppl IndStkoppl

Corr(Stkpl)all;fp Corr(IndStkpl)all;fp

Lincatc.g.E

ı1

ȷ

Dind−fin.
D1

and the condition that D1 ◦ ȷ
∼−→ RKEı1(Dind−fin.). The second is determined by:

Corr(IndStkpl)all;fp Corr(IndStkpl)all;ind−fp

Lincatc.g.E

D1

ı2

D2

where D2 is the operadic left Kan extension of D1 via ı2. Heuristically, this uses that for
any ind-placid stack X one has colimJX

D(Y )
∼−→ D(X ) where

JX = {Y f−→X | Y placid stack f fp-closed embedding},
to extend the sheaf theory.

1.5.5. Sheaves on sifted-placid stacks. Let sIndStkpl denote the category of sifted-placid
stacks. We notice that Remark 1.13 (3) implies that ı : Corr(IndStkpl) ↪→ Corr(sIndStkpl)
is fully faithful.

Proposition 1.15. The left Kan extension of (1.27) via ı, gives a 3-functor formalism

(1.28) Dind−fin. : Corr(sIndStkpl)all;ind−fp −→ Lincatc.g.E

satisfying:

(i) the class Eet ⊂ Er of representable étale morphisms is internally left adjointable and
the class Eind−f.p.p. ⊂ Er of representable ind-finitely presented proper morphisms is
internally left adjointable;

(ii) the class (X
f→ Y ) ∈ Eind−f.p ⊂ El of representable ind-fp morphisms is left ad-

joitable with adjoint f! which is compatible with weakly cohomologically pro-smooth
base change;

(iii) the class (X
f→ Y ) ∈ Ef.p. ⊂ Er of representable finitely presented morphism is

left adjointable with adjoint f∗ which is compatible with weakly cohomologically pro-
smooth morphism pullbacks.

Remark 1.16. For X a sifted-placid stack the following hold:

(1) one has an equivalence colimIX Dind−fin.(Y )
∼−→ Dind−fin.(X ), where

(1.29) IX = {Y f−→X | Y placid stack f ind-fp}.
(2) the category Dind−fin.(X ) is compactly generated and Dind−fin.(X )ω is generated by

objects of the form hY ,∗(FY ), where gY : Y → X is ind-fp, Y is a placid stack and
FY ∈ Dc(Y ).
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For further reference we summarize what concretely is encoded in the functor (1.28).

Lemma 1.17. Any correspondence X
f←− Z

g−→ Y of sifted-placid stacks, where g is
ind-fp morphism is sent to g∗ ◦ f ! : Dind−fin.(X )→ Dind−fin.(Y ).

(i) For any diagram

(1.30)

X ′ X

Y ′ Y

gX

f ′ f

gY

,

where gY is ind-fp, one has an equivalence: (gX )∗ ◦ (f ′)! ≃ f ! ◦ (gX )∗;

(ii) If f is representable ind-fp proper then f∗ is left adjoint to f !.

(iii) If f is representable ind-fp one has an adjunction (f!, f
!) such that g!Y ◦f!

∼−→ f ′! ◦g!X .

(iv) If g is representable fp-morphism then one has an adjunction (g∗, g∗) such that for
any pullback diagram

Z ′ Z

Y ′ Y

hZ

g′ g

hY

,

where hY is weakly cohomologically pro-smooth, one has (g′)∗ ◦ h!Y
∼−→ h!Z ◦ g∗.

(v) If f is representable ind-fp-proper and gY is representable fp then f!
∼−→ f∗ and we

have f ′∗ ◦ g∗X
∼−→∗ gY ◦ f∗ obtained by passing to left adjoints on (i).

We also spell out the open-closed gluing properties that the sheaf theory (1.28) satisfy.

Lemma 1.18. [19, Proposition 10.161] Let ı : Z ↪→ X be a closed embedding of sifted-
placid stacks with complement ȷ : U ↪→ X . If ı is finitely presented, equivalently ȷ is qcqs,
then we have a recollement diagram:

Dind−fin.(U ) Dind−fin.(X ) Dind−fin.(Z ).

ȷ!

ȷ∗

ȷ!

ı∗

ı!

ı∗

In particular, for every F ∈ D(X ) we have cofiber-fiber sequences:

(1.31) ı∗ı
!F −→ F −→ ȷ∗ȷ

!F ȷ!ȷ
!F −→ F −→ ı∗ı

∗F .

Notation 1.19. In the rest of this article we will simply writeD(X ) forDind−fin.(X ). This
should not cause confusion since we will never use the categories D(X ) in what follows.

1.6. Renormalized pushforward. For the computation of the co-center of the affine
Hecke category in §4 we will need continuous right adjoints to !-pullbacks, with sufficient
base change. These will exist in a rather large generality for our sheaf theory. In this section
we explain the ingredients necessary to make sense of that.
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1.6.1. Representable pushforward. Let f : X → Y be a cohomologically smooth morphism
between qcqs algebraic spaces, then by (1.15) we have:

(i) f∗(ωY ) is constructible;

(ii) the natural transformation f∗
∼−→ f∗(ωY ) ⊗ f !, induced by taking F = ωX in (1.8),

is an isomorphism, so f ! preserves constructible sheaves.

In particular, the functor f ren
∗ (F ) := f∗(f

∗(ωY )⊗F ) is a continuous right adjoint to f !.
We can extend the renormalized pushforward to cohomologically pro-smooth morphisms

as follows:

Proposition 1.20. [19, Proposition 10.74] Let f : X → Y be a cohomologically pro-smooth

morphism between qcqs algebraic spaces. Consider a factorization f : X = limI Xi
fi→ Y

where fi : Xi → Y are cohomologically smooth. We define:

f ren
∗ : D(X) −→ D(Y ), f ren

∗ (F ) := colim
I

(fi)∗(f
!
i(F )).

Then the class of cohomologically pro-smooth morphisms is right-adjointable and satisfies
projection formula.

The idea behind the proof of Proposition 1.20 is to start with the result for cohomo-
logically smooth morphisms, which holds by the projection formula for (f∗, f

!). Then one
extends it to cohomologically pro-smooth morphisms using the formula

f∗(F ) ≃ colim
I,J

(aXj′,j)
∗ ◦ (fi′,j′)∗ ◦ (aYi′,i),

where X
∼−→ limJ(Xj′

aX
j′,j→ Xj) and Y

∼−→ limI(Yi′
aY
i′,i→ Yi) are presentations, and fi′,j′ :

Xi′ → Yj′ is cohomologically smooth.
In fact, using the descent condition (1.24) we can also define a renormalized pushforward

for any f : X → Y be a representable cohomologically pro-smooth morphism between
placid stacks. Proposition 1.20 then implies that the class of representable cohomologically
pro-smooth morphisms is nicely right-adjointable for the sheaf theory (1.23).

1.6.2. Non-representable pushforward. In fact, for the argument that computes the cocen-
ter of the affine Hecke category we need to have a continuous right adjoints to pullbacks
via morphisms whose fiber is isomorphic to pt

H , where H is a cohomologically pro-smooth
group scheme. We start by explaining how to extend the construction of §1.6.1 to weakly
cohomologically pro-smooth morphisms.

Another way to think of the renormalized pushforward is by considering the sheaf theory
D∗ : Corr(AlgSpc)all,fp → Lincatc.g.E from (1.13). For any X ∈ AlgSpc the category D∗(X)
acts on D(X). Then, one notices that:

(1) for X ∈ AlgSpcpl there is a generalized dualizing sheaf ηX ∈ D(X) such that the D∗(X)

action induces an equivalence: ηX : D∗(X)
∼−→ D(X);

(2) for f : X → Y a pro-smooth morphism between placid algebraic spaces, given an

equivalence ηY : D∗(Y )
∼−→ D(Y ) then f∗(ηY ) : D

∗(X)
∼−→ D(X) is also an equivalence.
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Thus, by definition of f ren
∗ we have a commutative diagram:

(1.32)

D(X) D∗(X)

D(Y ) D∗(Y )

f ren
∗

η−1
X

f†

ηY

,

where f† : D
∗(X) → D∗(Y ) is the right adjoint to always defined the ∗-pullback f∗ :

D∗(Y )→ D ∗ (X), whose restriction to algebraic spaces of finite type is the usual f∗.

(3) Now given f : X → Y a weakly cohomologically pro-smooth morphism in the category
of placid algebraic spaces. We extend the definition of renormalized pushforward by
imposing that the diagram (1.32) commutes. We claim that this still satisfies Conditions
(i-iii) from Proposition 1.20 (see [20, Proposition 10.75] for details).

Given f : X → Y a weakly cohomologically pro-smooth morphism between placid
stacks, by [20, Lemma 10.111 (3)] there are placid atlases hY : UY → Y and hX : UX →X
and a cohomologically pro-smooth morphism f ′ : UX → UY such that hY ◦ f ′ = f ◦ hX .
Thus, we define:

f ren
∗ : D(X) −→ D(Y ), f ren

∗ := (hY )ren∗ ◦ (f ′)ren∗ ◦ h!X .

The base change that we need for this renormalized push-forward is somewhat tricky. To
explain it we need to introduce a couple of concepts. A morphism f : X → Y is said to
be cohomologically unipotent if f is cohomologically smooth and for every geometric point
y → Y the cohomology of y ×

Y
X is acyclic.

We have the following analogues of the definitions in §1.4.4. For f : X → Y a morphism
in AlgSpc we say that:

(a) f is cohomologically pro-unipotent if there is a presentation X
∼−→ limI Xi as a cofiltered

limit where: each Xi → Xj is cohomologically unipotent affine and each Xi → Y is
cohomologically unipotent;

(b) f is essentially cohomologically pro-unipotent if there is a factorization X → X ′ → Y
where X → X ′ is cohomologically pro-unipotent and X ′ → Y is finitely presented.

A morphism f : X → Y in PStk is said to be (resp. essentially) cohomologically pro-
unipotent if for every affine scheme S → Y the fiber product S×

Y
X is a qcqs algebraic space

and the induced morphism S×
Y

X → S is (resp. essentially) cohomologically pro-unipotent.

The following is the crucial result that will ultimately provide the base change for renor-
malized pushforwards that we need.

Proposition 1.21. [19, Theorem 10.150] Consider the 3-functor formalism of (1.26). The
class Ew.c.p.s. ⊂ El of weakly cohomologically pro-smooth morphisms is right-adjointable
with right adjoint f ren

∗ that

(i) is compatible with pullback with respect to the class Ee.c.u. of essentially cohomologi-

cally unipotent morphisms, i.e. (gY )! ◦ f ren
∗

∼−→ (f ′)ren∗ ◦ (gX )! for gY ∈ Ee.c.u.;

(ii) is compatible with the class Eind−fp. of representable ind-fp pushforward, i.e. (gY )∗ ◦
(f ′)ren∗

∼−→ f ren
∗ ◦ (gX )∗ for gY ∈ Eind−fp.;

(iii) satisfies the projection formula, i.e. f ren
∗ (F )⊗ G

∼−→ f ren
∗ (F ⊗ f !(G )) for every F ∈

D(X ) and G ∈ D(Y ).
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The idea to proof the above Proposition is to check that one has left adjoints as in
Proposition 1.9 ((iii)) for essentially cohomologically pro-unipotent morphisms, which allows
one to extend the renormalized pushforward of Proposition 1.20 to weakly cohomologically
pro-smooth morphisms between qcqs algebraic spaces. Then, since the category of ind-finite
sheaves on ind-placid stacks satisfies universal descent also with respect to representable
essentially cohomologically pro-unipotent morphisms one can lift the base change morphisms
to this generality.

2. Newton strata as subschemes

2.1. Newton strata: set-theoretic definition. Recall the convetions of §1.1 (a). Let G
be a connected reductive algebraic group over F . Let S be a maximal F -split torus of G.
Let T be the centralizer of S and NS the normalizer of S. Then we define the Iwahori-Weyl
group W̆ := NS(F )/T(F )1, where T(F )1 is the kernel of the Kottwitz homomorphism
T(F ) → X∗(N)I . The maximal split torus S determines an apartment A in the Bruhat–
Tits building B(G(F )) associated to G(F ). Let a be the choice of an alcove (i.e. chamber)
in A and let Ia denote the unique smooth group scheme over OF with generic fiber G and
such that Ia(OF ) fixes a in B(G(F )) (as constructed for instance, in [22, §8.4]). The choice
of a determines a splitting W̆ = W̆a ⋊ Ω̆, where Wa is the affine Weyl group and Ω̆ is the
stabilizer of a in A (see [22, §6.6.3]). Notice that Ω̆ ≃ π1(G(F ))I ([11, Lemma 14]), in

particular Ω̆ does not depend on the choice of alcove a. We denote by S̆ the set of simple
reflections of W̆a and by ℓ̆ the length function on W̆ . We also have that Ω̆ = ker ℓ̆.

Notation 2.1. We will consider two situations:

(i) equal characteristic, i.e. chark = charF . In this case, given a choice of uniformizer
ϵ ∈ OF we have OF ≃ k[[ϵ]] and F ≃ k((ϵ)). In particular, F is a k-algebra. We let:

(2.1) LG, Iw : Aff −→ Spc, LG(A) := G(A((ϵ))), Iw(A) := I(A[[ϵ]]).

(ii) mixed characteristic, i.e. p = chark ̸= charF = 0. In this case, we consider:

(2.2) LG, Iw : Affperf −→ Spc, LG(A) := G(W (A)[1/p]), Iw(A) := I(WOF
(A)),

where WOF
(A) := W (A) ⊗W (k) OF , and, for a k-algebra A, W (A) denotes the ring

of Witt vectors of A.

In both situations of Notation 2.1, we let Ğ := LG(k) = G(F̆ ) and Ĭ := Iw(k). It is well-

known that we have the Cartan decomposition Ğ = ⊔w∈W̆ ĬẇĬ (see [22, Theorem 5.2.1]).

Let θ be a group automorphism on Ğ with θ(Ĭ) = Ĭ. Then the action of θ on Ğ induces

a length-preserving group automorphism on W̆ (and hence induces a group automorphism

on Ω̆ and a bijection on S̆). We denote these induced actions also by θ. We consider the

θ-twisted conjugation action on Ğ defined by g ·θ g′ = gg′θ(g)−1. We define the θ-twisted

conjugation action on W̆ in the same way.

2.1.1. Combinatorial input. Following [17], we have two arithmetic invariants on the set of

θ-twisted conjugacy classes of W̆ , given by the Kottwitz map and the Newton map. Note
that the Kottwitz map and the Newton map do not distinguish all the θ-twisted conjugacy
classes. However, they distinguish an important subfamily of θ-twisted conjugacy classes,
called the straight θ-conjugacy classes.

An element x of W̆ is called θ-straight if ℓ(xθ(x) · · · θn−1(x)) = nℓ(x) for all positive

integers n. A θ-twisted conjugacy class of W̆ is called straight if it contains some θ-straight
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element. For any θ-straight element x, we denote by Ox the straight θ-conjugacy class
containing x.

For w,w′ ∈ W̆ and s ∈ S̆, we write w
s−→θ w′ if w′ = swθ(s) and ℓ(w′) ⩽ ℓ(w). We write

w →θ w′ if there is a sequence w = w0, w1, · · · , wn = w′ of elements in W̆ such that for

any k, wk−1
s−→θ wk for some s ∈ S̆. We write w ≈θ w′ if w →θ w′ and w′ →θ w. It is easy

to see that w ≈θ w′ if w →θ w′ and ℓ(w) = ℓ(w′). For any θ-conjugacy class O in W̆ , we
denote by Omin the set of minimal length elements in O. Now we recall some properties on
the minimal length elements, obtained in [17, §2 and §3].

Theorem 2.2. Let O be a θ-conjugacy class of W̆ and w ∈ O. Then there exists w′ ∈ Omin

such that w →θ w
′.

Theorem 2.3. Let O be a straight θ-conjugacy class of W̆ and w,w′ ∈ Omin. Then there
exists τ ∈ Ω̆ such that w ≈θ τw

′θ(τ)−1.

Let O be a straight θ-conjugacy class of W̆ . For w ∈ W̆ , we write O ≼ w if there exists
a minimal length element w′ ∈ O with w′ ⩽ w. By [15, Proposition 2.4], if O ≼ w and
w1 →θ w, then O ≼ w1. Note that for any given w, {w′ ⩽ w} is a finite set. Hence {O ≼ w}
is again a finite set.

Let O1,O2 be straight θ-conjugacy classes of W̆ , we write O1 ≼ O2 if O1 ≼ w for some
minimal length element w of O2. By [15, §3.2], ≼ is a partial order on the set of straight

θ-conjugacy classes of W̆ .

2.1.2. Set-theoretic Newton strata. In [18], the first author and S. Nie introduced a “nice”

decomposition of Ğ into a disjoint union of subsets, called the Newton strata, such that

• each Newton stratum is stable under the θ-twisted conjugation action of Ğ;

• the Newton strata are indexed by a discrete set, which is a subset of the set of θ-conjugacy
classes of W̆ .

The definition is as follows. Let O be a straight θ-conjugacy class of O. We define
ĞO = Ğ·θ(ĬẇĬ), where w is a minimal length element in O. By [16, §3.2], ĞO is independent

of the choice of the minimal length representatives of O. We call ĞO the Newton stratum
associated to O. By [16, Theorem 3.2], we have the following Newton decomposition:

Ğ = ⊔O∈W̆�θW̆
ĞO,

where W̆ �θ W̆ denotes the set of straight θ-conjugacy classes.

Following [14, §2.5], a subset X ⊆ Ğ is admissible if for any w ∈ W̆ , there exists n ∈ N

such that X ∩ ĬẇĬ is stable under the right action of Ĭn.

2.2. A technical property. In this subsection, we establish the following technical result,
which plays a crucial role in the constructions in §2.3.

For every w, we write ĬẇĬ = ∪w′≤wĬẇ
′Ĭ. For any n ∈ N and finite subset Γ ⊆ Ω̆ we

let Ğ⩽nΓ := ∪w∈W̆aΓ , ℓ̆(w)⩽nĬẇĬ. We simply write Ğ⩽n for Ğ⩽n
Ω̆

. In particular, notice that

Ğ⩽n1 = ∪w∈W̆a , ℓ̆(w)⩽nĬẇĬ and Ğ⩽n1 = Ğ⩽n ∩ Ğ1.

Proposition 2.4. Let w ∈ W̆ . Then

(1) Ğ ·θ ĬẇĬ = ⊔O≼wĞO.
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(2) For any w′ ∈ W̆ , there exists n ∈ N and a finite subset Γ ⊆ Ω̆ such that

Ğ⩽nΓ ·θ ĬẇĬ ∩ Ĭẇ′Ĭ = Ğ ·θ ĬẇĬ ∩ Ĭẇ′Ĭ .

Before giving the proof, we have the following immediate corollary.

Corollary 2.5. Let w be a θ-straight element contained in a straight θ-conjugacy class O.
Then Ğ ·θ ĬẇĬ = ĞO ⊔ (∪w′<wĞ ·θ Ĭẇ′Ĭ).

We also show that Proposition 2.4 implies the admissibility of the Newton strata of Ğ.
Of course, this will also follow Theorem 2.7 (2) below (by noetherian approximation). But
the proof given here is more elementary and more explicit.

Corollary 2.6. For any straight θ-conjugacy class O of W̆ , ĞO is an admissible subset of
Ğ.

Proof. Let w be a θ-straight element in O. By Proposition 2.4 (1), Ğ ·θ ĬẇĬ = ⊔O′≼wĞO′ .

By Proposition 2.4 (2), for any w′ ∈ W̆ , there exists n ∈ N, such that Ĭẇ′Ĭ ∩ (⊔O′≼wĞO′) =

Ĭẇ′Ĭ ∩ Ğ⩽n ·θ ĬẇĬ. For any g ∈ Ğ⩽n, θ(g)Ĭθ(g)−1 ⊃ Ĭn. Thus Ğ
⩽n ·θ ĬẇĬ is stable under the

right action of Ĭn. Hence Ĭẇ′Ĭ ∩ (⊔O′≼wĞO′) is stable under the right multiplication of Ĭn.

Similarly, Ĭẇ′Ĭ ∩ (⊔O′≼w,O′ ̸=OĞO′) is stable under the right multiplication of Ĭn′ for some

n′ ∈ N. Thus Ĭẇ′Ĭ ∩ ĞO is stable under the right multiplication of Ĭmax{n,n′}. Hence ĞO is
admissible. □

2.2.1. Minimal length element case. Suppose that w is of minimal length in its θ-conjugacy
class. By [17, Proposition 2.7 & Theorem 2.9], there exists J ⊂ S̆ with WJ finite, a θ-

straight element x ∈ W̆ such that x is of minimal length in its WJ\W̆/Wθ(J)-coset and
Ad(x)θ(J) = J , and u ∈ WJ , such that w ≈θ ux. Let O be the θ-conjugacy class of x.
Then O is straight. By definition, O ≼ ux. By definition, O ≼ w.

By definition, there exists a sequence w = w1
s1−→θ w2

s2−→θ · · ·
sn−1−−−→θ wn = ux, where

s1, . . . , sn−1 ∈ S̆, w1, . . . , wn ∈ W̆ with ℓ(w) = ℓ(w1) = · · · = ℓ(wn−1) = ℓ(wn) = ℓ(ux). For

any i ⩽ n− 1, any element in ĬẇiĬ is θ-conjugated by an element in Ĭ ṡiĬ to an element in
Ĭẇi+1Ĭ.

Let P̆ be the standard parahoric subgroup of Ğ generated by Ĭ and ż for z ∈ WJ . Let

UP̆ be the pro-unipotent radical of P̆ and P̆ = P̆ /UP̆ be the reductive quotient of P̆ . Since

Ad(x)θ(J) = J , the map θ̄x := p̄ 7→ ẋθ(p̄)ẋ−1 gives an automorphism on P̆ . Moreover,

Ĭ/UP̆ is a θ̄x-stable Borel subgroup of P̆ . By Steinberg’s theorem, P̆ = {p̄p̄′θ̄x(p̄)−1; p̄ ∈
P̆ , p̄′ ∈ Ĭ/UP̆ }. Hence

Ĭ u̇ẋĬ ⊂ P̆ ẋ = {pp′ẋθ(p)−1; p ∈ P̆ , p′ ∈ Ĭ}.
In other words, any element in Ĭ u̇ẋĬ is θ-conjugated by an element in P̆ to an element in
Ĭ ẋĬ.

Let wJ be the longest element in WJ . Then P̆ = ⊔z∈WJ
Ĭ żĬ ⊂ Ğ⩽ℓ(wJ ). We have

(a) ĬẇĬ ⊂ ĞO.

(b) ĬẇĬ ⊂ Ğ
⩽(n+ℓ(wJ ))
1 ·θ (Ĭ ẋĬ).

Let x′ be another θ-straight element in O. Then by Theorem 2.3, x ≈θ τx′θ(τ)−1 for

some τ ∈ Ω̆, that is τxθ(τ)−1 →θ x′ →θ τxθ(τ)−1. Hence there exists n′ ∈ N such that

Ĭ ẋĬ ⊂ Ğ⩽n
′

{τ} ·θ (Ĭ ẋ
′Ĭ). Hence we have



26 XUHUA HE, ARON HELEODORO, AND XINWEN ZHU

(c) For any θ-straight element x′ in O, there exists m ∈ N and τ ∈ Ω̆ such that ĬẇĬ ⊂
Ğ⩽m{τ} ·θ (Ĭ ẋ

′Ĭ).

2.2.2. Inductive procedure. We prove by induction on ℓ(w) that

(a) ĬẇĬ ⊂ ⊔O≼wĞO.
(b) For any θ-straight element x, there exists m ∈ N and a finite subset Γ ⊆ Ω̆ such that

ĬẇĬ ∩ ĞOx ⊂ Ğ⩽mΓ ·θ (Ĭ ẋĬ).
The case where w is a minimal length element in its θ-conjugacy class is established in

§2.2.1. Now suppose that w is not of minimal length in its θ-conjugacy class. By Theorem

2.2, there exists a sequence w = w1
s1−→θ w2

s2−→θ · · ·
sn−1−−−→θ wn, where s1, . . . , sn−1 ∈ S̆,

w1, . . . , wn ∈ W̆ with ℓ(w) = ℓ(w1) = · · · = ℓ(wn−1) > ℓ(wn). For any i < n − 1, any

element in ĬẇiĬ is θ-conjugated by an element in Ĭ ṡiĬ to an element in Ĭẇi+1Ĭ.

Similarly, any element in Ĭẇn−1Ĭ is conjugate by an element in Ĭ ṡn−1Ĭ to an element in

ĬẇnĬ ⊔ Ĭẇ′nĬ, where w′n = sn−1wn−1. Therefore ĬẇĬ ⊂ Ğ⩽n ·θ (ĬẇnĬ ⊔ Ĭẇ′nĬ).
Note that ℓ(wn) = ℓ(w) − 2 and ℓ(w′n) = ℓ(w) − 1. Note that ℓ(wn), ℓ(w

′
n) < ℓ(wn−1) =

ℓ(w). By inductive hypothesis, Ğ ·θ (ĬẇnĬ) ∪ Ğ ·θ (Ĭẇ′nĬ) ⊂ ⊔O≼wn or O≼w′
n
ĞO. We have

wn < wn−1 and w′n < wn−1. Hence O ≼ wn or O ≼ w′n implies that O ≼ wn−1. By [15,

Proposition 2.4], O ≼ w. So ĬẇĬ ⊂ ⊔O≼wĞO.
Let x be a θ-straight element with Ox ≼ w. By inductive hypothesis, there exists n′ ∈ N

and finite subsets Γ1,Γ2 ⊆ Ω̆ such that ĬẇnĬ ∩ ĞOx ⊂ Ğ⩽n
′

Γ1
·θ (Ĭ ẋĬ) and Ĭẇ′nĬ ∩ ĞOx ⊂

Ğ⩽n
′

Γ2
·θ (Ĭ ẋĬ). Since ĬẇĬ ⊂ Ğ⩽n1 ·θ (ĬẇnĬ ⊔ Ĭẇ′nĬ), we have ĬẇĬ ∩ ĞOx ⊂ Ğ

⩽(n+n′)
Γ1∪Γ2

·θ (Ĭ ẋĬ).

2.2.3. Proof of Proposition 2.4. By §2.2.2 (a), for any y ⩽ w, we have that Ğ ·θ (Ĭ ẏĬ) ⊂
⊔O≼yĞO. By definition, O ≼ y implies that O ≼ w. Hence ĬẇĬ = ⊔y⩽wĬ ẏĬ ⊂ ⊔O≼wĞO.
On the other hand, if O ≼ w, then there exists a minimal length element y of O with y ⩽ w.

By definition, ĞO = Ğ ·θ (Ĭ ẏĬ). Then ⊔O≼wĞO ⊂ ∪y⩽wĞ ·θ (Ĭ ẏĬ) = Ğ ·θ ĬẇĬ. This finishes
the proof of part (1).

Let O ≼ w and x be a θ-straight element in O. By definition, there exists a minimal
length element x′ of Ox with x′ ⩽ w. Since x is θ-straight by §2.2.1, there exists k ∈ N and

τ ∈ Ω̆ such that Ĭ ẋĬ ⊂ Ğ⩽k{τ} ·θ (Ĭ ẋ
′Ĭ) ⊂ Ğ⩽k{τ} ·θ ĬẇĬ. By §2.2.2, there exists m ∈ N and a

finite subset Γ ⊆ Ω̆ such that Ĭẇ′Ĭ∩ĞO ⊂ Ğ⩽mΓ ·θ (Ĭ ẋĬ). Then Ĭẇ′Ĭ∩ĞO ⊂ Ğ
⩽(k+m)
Γ′ ·θ ĬẇĬ,

where Γ′ = {zτ ; z ∈ Γ}. As {O ≼ w} is a finite set, there exists n ∈ N and a finite subset

Γ′ ⊆ Ω̆ such that

Ğ ·θ ĬẇĬ ∩ Ĭẇ′Ĭ = ⊔O≼wĬẇ′Ĭ ∩ ĞO ⊂ Ğ⩽nΓ′ ·θ ĬẇĬ.
This finishes the proof of part (2).

2.3. Newton strata: algebro-geometric definition. The main goal of the remaining
of this section is to prove the following theorem.

Theorem 2.7. Let O be a straight θ-conjugacy class of W̆ . Then there is a (perfectly)
finitely presented locally closed embedding ıO : LGO ↪→ LG with LGO reduced such that

(1) ıO factors as:

(2.3) LGO LGO
ȷO

and LGO LG
ıO
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where ıO is a (perfecly) finitely presented closed embedding, and ȷO is a quasi-compact
open embedding with dense image;

(2) LGO(k) = ĞO and LGO(k) = ∪O′≼OĞO′;

(3) We have LGred = colimO LGO.

We note that as we are outside the traditional finite type algebraic geometry, k-points
are usually not enough to determine the underlying schemes. So the theorem is more
subtle than naive thought. The crucial point is finite presentation of ȷO and ıO. Once this
is available, then LGO is a placid ind-scheme, and the second condition of the theorem
uniquely determines LGO ⊂ LGO as locally closed subspaces of LG.

2.3.1. The closed scheme LG⩽[w]θ . Let Fl := LG/Iw be the affine flag variety of G. For

each w ∈ W̆ , let

Flw Fl⩽w Fl
jw i⩽w

be the corresponding (locally) closed embedding of Schubert cell (variety). We write iw =
i⩽w ◦ jw.

Remark 2.8. Notice that since Fl is an ind-scheme of finite type ([32, Theorem 1.4]), there
are at least two ways we can define the Schubert cell and variety:

(1) define Flw as the reduced subscheme with underlying set Ĭẇ, then let Fl⩽w be the
reduced subscheme of Fl corresponding to the Zariski closure of Flw;

(2) define Fl⩽w to be the scheme theoretic image of Iw
(−)·ẇ→ LG→ Fl, then let Flw be the

open complement of ⊔w′<wFlw′ ↪→ Flw.

When Fl is reduced, e.g. if G is semi-simple, splits over a tamely ramified extension of F
and p ∤ π1(G) ([32, Theorem 0.2]), then both definitions agree. In the context of Newton
strata, it is the second definition that generalizes, but in a subtle way.

Let LG(⩽)w be the inverse image of Fl(⩽)w under the projection LG→ Fl. Then LG(⩽)w
is an Iw-torsor over Fl(⩽)w, and therefore is a qcqs scheme. In addition, LG(⩽)w → LG is
a fp (locally) closed embedding, still denoted by i(⩽w), and the inclusion LGw ⊂ LG⩽w is

affine, still denoted by jw. Note that LGw(k) = ĬẇĬ and LG≤w(k) = ĬẇĬ.
Write LG = colimi Si with Si affine and Si → Sj closed embedding, then LG⩽w → LG

factors through some LG⩽w → Si. So LG⩽w is in fact affine, and so is LGw. We also have
LGred = colimw LG⩽w, as Flred = colimw Fl⩽w.

Now let θ : LG → LG be a lift of the automorphism θ : Ğ → Ğ to the loop group
ind-scheme which preserves Iw. The first goal is to associate to every w ∈ W̆ another
ind-scheme LG⩽[w]θ such that the inclusion map

i⩽[w]θ : LG⩽[w]θ −→ LGred

is still a fp closed embedding. Informally, LG⩽[w]θ is the LG-orbit in LG of LG⩽w under
the θ-conjugation action. Here is the precise algebro-geometric construction.
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Consider the following commutative diagram
(2.4)

LG⩽v ×Iw,Adθ LG⩽w
i⩽v
//

i⩽w

��

LG×Iw,Adθ LG⩽w //

i⩽w

��

LG⩽w

AdθIw

i⩽w

��

LG⩽v ×Iw,Adθ LG
i⩽v

//

β⩽v ∼=
��

LG×Iw,Adθ LG
α
∼=
//

β ∼=
��

LG×Iw LG //

m

��

LG×IwLG
AdθIw

←−
h
��

−→
h // LG

AdθIw

Nt

��

Fl⩽v × LG
i⩽v

// Fl× LG
pr

// LG // LG
AdθIw

Nt // LG
AdθLG

,

where

•
←−
h (resp.

−→
h ) is induced by LG× LG→ LG, (g1, g2) = g1g2 (resp. (g1, g2) = g2θ(g1));

• α is induced by LG× LG→ LG× LG, (g1, g2) = (g1, g2θ(g1)
−1);

• β is induced by LG× LG→ LG× LG, (g1, g2) = (g1, g1g2θ(g1)
−1).

Note that except for the square giving m ◦ α = pr ◦ β, all other commutative squares are
Cartesian. In addition, by étale descent of affine morphisms, LG⩽v ×Iw,Adθ LG(⩽)w is affine
over Fl⩽v, and therefore is a qcqs scheme.

It follows that the composed morphism (along the left column and the bottom arrow)

Adv,wθ : LG⩽v ×Iw,Adθ LG⩽w −→ LG, (g1, g2) 7−→ g1g2θ(g1)
−1

is fp proper.
For each m ∈ N and finite subset Γ ⊆ Ω̆ we let LG≤mΓ := ∪z∈W̆Γ , ℓ(z)⩽mLG⩽z. The

morphism:

Adm,Γ,w
θ : LG⩽mΓ ×Iw,Adθ LG⩽w −→ LG

is also fp proper. This means that for every closed embedding i⩽u : LG⩽u → LG, the base
changed morphism

Adu,m,Γ,w
θ : LG⩽u ×LG (LG⩽mΓ ×Iw,Adθ LG⩽w) −→ LG⩽u

is a fp proper morphism of qcqs schemes. By noetherian approximation ([35, Lemma
01ZM]), this morphism arises as the base change of a proper morphism

(2.5) C
(n)
u,m,Γ,w −→ Fl

(n)
⩽u := LG⩽u/Iw

(n)

between finite type schemes over k, where n≫ 0 and Iw(n) is the nth principal congruence

subgroup of Iw. (So Fl
(n)
⩽u → Fl⩽u is a Iw/Iw(n)-torsor.)

Such morphism necessarily factors as

C
(n)
u,m,Γ,w −→ Z

(n)
u,m,Γ,w ⊂ Fl

(n)
⩽u

where Z
(n)
u,m,Γ,w is the scheme theoretic image (see [35, Definition 01R7]) of (2.5). Then

C
(n)
u,m,Γ,w → Z

(n)
u,m,Γ,w is proper surjective and Z

(n)
u,m,Γ,w ⊂ Fl

(n)
⩽u is a closed embedding. As the

scheme theoretic image of quasi-compact morphisms commute with flat base change ([35,

Lemma 081I]), we see that the schematic image of Adu,m,Γ,w
θ , denoted by Zu,m,Γ,w, is the

base change of Z
(n)
u,m,Γ,w along the projection LG⩽u → Fl

(n)
⩽u . In particular, Adu,m,Γ,w

θ factors
as

LG⩽u ×LG (LG⩽mΓ ×Iw,Adθ LG⩽w) −→ Zu,m,Γ,w ⊂ LG⩽u

https://stacks.math.columbia.edu/tag/01ZM
https://stacks.math.columbia.edu/tag/01ZM
https://stacks.math.columbia.edu/tag/01R7
https://stacks.math.columbia.edu/tag/081I
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with the first morphism surjective fp proper and the second morphism fp closed embedding.
Now if m ⩽ m′ and Γ ⊆ Γ′ we have the following commutative diagram

LG⩽u ×LG (LG⩽mΓ ×Iw,Adθ LG⩽w) //

��

Zu,m,Γ,w
//

��

LG⩽u

LG⩽u ×LG (LG⩽m
′

Γ′ ×Iw,Adθ LG⩽w) // Zu,m′,Γ′,w
// LG⩽u

As the left vertical map is a closed embedding, so is the middle vertical map. In addition,
it is fp. We need the following lemma.

Lemma 2.9. Fix u,w. Then there is some m ⩾ 0 and finite Γ ⊆ Ω̆ such that Zu,m,Γ,w →
Zu,m′,Γ′,w is a nilpotent thickening for every m′ ⩾ m and Γ′ ⊇ Γ.

Proof. We first note that as k-points lift along any fp morphisms, we have

(2.6) Zu,m,Γ,w(k) = ĬuĬ ∩ (Ğ⩽mΓ ·θ ĬwĬ).

Then by Proposition 2.4 (2), for fixed u,w, there exists some m ∈ N and finite Γ ⊆ Ω̆ such
that

(2.7) ĬuĬ ∩ (Ğ⩽mΓ ·θ ĬwĬ) = Zu,m,Γ,w(k)
∼−→ Zu,m′,Γ′,w(k) = ĬuĬ ∩ (Ğ⩽m

′

Γ′ ·θ ĬwĬ)

for every m′ ⩾ m and Γ′ ⊇ Γ. Now as both morphisms Zu,m,Γ,w → Zu,m′,Γ′,w → LG⩽u

are fp closed embeddings, they arise as the pullback of morphisms Z
(n)
u,m,Γ,w → Z

(n)
u,m′,Γ′,w →

LG⩽u/Iw
(n) between finite type schemes over k. Notice that (2.7) implies that Z

(n)
u,m,Γ,w(k)

∼−→
Z

(n)
u,m′,Γ′,w(k), so we see that Z

(n)
u,m,Γ,w → Z

(n)
u,m′,Γ′,w is a nilpotent thickening. Therefore,

Zu,m,Γ,w → Zu,m′,Γ′,w is also a nilpotent thickening. □

The above lemma implies that

LG⩽u,⩽[w]θ := colim
m≥0,Γ⊆Ω̆

(Zu,m,Γ,w)red ⊂ LG⩽u

is a fp closed embedding. In particular LG⩽u,⩽[w]θ is a qcqs scheme. E.g. LG⩽w,⩽[w]θ =
LG⩽w. Finally, let

(2.8) LG⩽[w]θ := colim
u∈W̆

LGu,⩽[w]θ ⊂ LG.

This is an ind-scheme, with the inclusion morphism LG⩽[w]θ → LG being fp closed embed-
ding, as desired. By (2.6), we have

LG⩽[w]θ(k) = Ğ ·θ ĬẇĬ.

The construction also shows that LG⩽[w]θ is ind-placid. Indeed, LG⩽u,⩽[w]θ =
⋃

m≥0(Zu,m,Γ,w)red

for finitely many m and Γ ∈ Ω̆, and is an Iw(n)-torsor over
⋃

m≥0(Zu,m,Γ,w)
(n)
red for some n,

and therefore is placid. Furthermore, it is stable under the θ-conjugation action of LG on
itself. We also have LG⩽[w]θ ⊂ LG⩽[w′] if w ⩽ w′, and

(2.9) LGred =
⋃

w∈W̆

LG⩽[w]θ .
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2.3.2. The locally closed scheme LG[w]θ . Now we fix a straight θ-conjugacy class and let w
be a θ-straight element in that conjugacy class.

We let

LG[w]θ = LG⩽[w]θ −
⋃

w′<w

LG⩽[w′]θ .

Then LG[w]θ ⊂ LG⩽[w]θ is quasi-compact open embedding, and therefore LG[w]θ is a placid
ind-scheme as well. By Corollary 2.5, we have

LG[w]θ(k) = ĞO.

Next, we prove that

LG[w]θ = LG[w′]θ

if w and w′ are of two straight elements in the same θ-conjugacy class of W̆ . For this, it is
enough to show that LG[w]θ∩LG⩽u = LG[w′]θ∩LG⩽u for every u. As both LG[w]θ∩LG⩽u →
LG⩽u and LG[w′]θ ∩ LG⩽u → LG⩽u are fp locally closed embedding, they arise as base

change of some locally closed reduced subschemes of Fl
(n)
⩽u . It then is enough to show that

LG[w]θ(k) ∩ LG⩽u(k) = LG[w′]θ(k) ∩ LG⩽u(k). But both are just LG⩽u(k) ∩ ĞO.

Now for every θ-straight conjugacy class O ⊂ W̆ , we can define

LGO = LG[w]θ ,

for some θ-straight element w in this conjugacy class.
We need one more lemma.

Lemma 2.10. For every u, the composed morphism

LG≤u ×LG (LG⩽mΓ ×Iw,Adθ LGw) ⊂ LG≤u ×LG (LG⩽mΓ ×Iw,Adθ LG≤w) −→ LG⩽u ∩LG≤[w]θ

factors as

LG≤u ×LG (LG⩽mΓ ×Iw,Adθ LGw) −→ LG≤u ∩ LGO ⊂ LG⩽u ∩ LG≤[w]θ .

Proof. We consider the map

LG≤u×LG(LG
⩽m
Γ ×

Iw,AdθLGw)×LG⩽u∩LG≤[w]θ
LG≤u∩LGO ⊂ LG≤u×LG(LG

⩽m
Γ ×

Iw,AdθLGw),

which is a quasi-compact open embedding (as it is the base change of LG≤u∩LGO ⊂ LG≤u∩
LG≤[w]θ). By Corollary 2.5, the above map induces a bijection on k-points. Therefore it is
an isomorphism. The lemma then follows. □

2.3.3. Proof of Theorem 2.7. Given all the discussions above, the remaining key point is to
show that for w ∈ O being θ-straight, we have

LGO = LG⩽[w]θ .

This means that every point x ∈ LG⩽[w]θ admits a generalization to a point η ∈ LG[w]θ .

We may lift x to a point x′ to LG≤u ×LG (LG⩽mΓ ×Iw,Adθ LG≤w). As LGw ⊂ LG⩽w
is open dense, the embedding LG⩽mΓ ×Iw,Adθ LGw ⊂ LG⩽mΓ ×Iw,Adθ LG≤w is also open
dense. Therefore, after possibly enlarging u, x′ admits a generalization to a point η′ ∈
LG≤u ×LG (LG⩽mΓ ×Iw,Adθ LGw). I.e. there is a valuation ring V and a map SpecV →
LG≤u×LG (LG⩽mΓ ×Iw,Adθ LG≤w) such that the generic point of SpecV maps to η′ and the
closed point of SpecV maps to x′. The image η of η′ in LG⩽u ∩ LG⩽[w]θ actually belongs
to LG⩽u ∩LGO by Lemma 2.10. In other words, we have a map SpecV → LG≤[w]θ , which
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sends the closed point to the given point x and sends the generic point to η ∈ LG≤u∩LGO.
It follows that LGO = LG≤[w]θ .

In particular, we see that LG≤[w]θ is independent of the choice of minimal lenght elements
in a straight θ-conjugacy class and we can define

LGO := LG≤[w]θ = LGO.

Then it follows from Proposition 2.4 (1) and LGO(k) = ∪O′≼OLGO′(k). The first two parts
of the theorem thus have been proved.

Recall that LGred := colimi∈I(Xi)red, for any presentation LG = colimI Xi as an ind-
scheme. Thus, the last part of the theorem follows from (2.9).

3. Newton decomposition of D
(

LG
Adθ(LG)

)
3.1. Categorical closed stratifications from geometric stratifications. In this sec-
tion we prove the following general result that shows that a stratification of a sifted-placid
stack X by fp-closed stratum produces a closed stratification of the category of sheaves
D(X ).

Proposition 3.1. Let P be a down-finite partially ordered set and assume we are given a
collection {Xp}p∈P of sifted-placid stacks, such that

(1) the closure Xp ≃ Xp := ⊔q⩽pXq, ȷp : Xp ↪→ Xp is qc qs and ıp : Xp ↪→ X is finitely
presented closed;

(2) one has colimp∈P Xp = Xred.

Then the assignment:

P −→ ClD(X ), p 7−→ (ıp)∗ : D(Xp) ↪→ D(X )

gives a P -closed stratification of D(X ).

Before giving the proof of Proposition 3.1 we need the following formal consequence of
Lemma 1.18.

Lemma 3.2. Let

(3.1)

Y Z2

Z1 X

k2

k1 i2

i1

,

be a pullback square of fp-closed embeddings of sifted-placid stacks, where Y = Z1 ∩ Z2 and
X = Z1 ∪ Z2. Then

D(Y ) D(Z2)

D(Z1) D(X)

k2,∗

k1,∗ i2,∗

i1,∗

is a push-out of categories in PrR/D(X).
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Proof. Let j1 : U1 := X\Z1 ↪→ X denote the open complement of Z1. Notice that Z2\Y =
U1 and let l2 : U1 ↪→ Z2 denote the open complement to k2. By the open-closed gluing of
constructible sheaves we have an equivalence:

D(X)
∼−→

l.lax
lim

(
D(U1)

i∗1j1,∗−→ D(Z1)

)
F 7−→ (j!1F , i!1F , gF : i∗1j1,∗j

!
1F −→ i!1F [1]),

where the morphism gF is induced by the cofiber-fiber sequence i1,∗i
!
1F → F → j1,∗j

!
1F .

Here the category liml.lax

(
D(U1)

i∗1j1,∗→ D(Z1)

)
has a concrete description as triples

(FU1 ∈ D(U1),FZ1 ∈ D(Z1), α : i∗1j1,∗FU1 −→ FZ1 [1]).

We also have an equivalence:

D(Z2)
∼−→

l.lax
lim

(
D(U1)

k∗2 l2,∗−→ D(Y )

)
G 7−→ (l!2G , k!2G , gG : k∗2l2,∗l

!
2G −→ k!2G [1]),

where gG is induced by the cofiber-fiber sequence k2,∗k
!
2G → G → l2,∗l

!
2G and the category

liml.lax

(
D(U1)

k∗2 l2,∗→ D(Y )

)
can be concretely described as the category of triples:

(GU1 ∈ D(U1),GY ∈ D(Y ), α : k∗2l2,∗GU1 −→ GY [1]).

Now we claim that

Ψ : D(X) −→ D(Z1)
⊔

D(Y )

D(Z2)(3.2)

F 7−→ (i!1F , i!2F , η : k!1i
!
1F

∼−→ k!2i
!
2F )

is an equivalence. Indeed, consider the functor

Φ : D(Z1) ⊔D(Y ) D(Z2) −→
l.lax
lim

(
D(U1)

i∗1j1,∗−→ D(Z1)

)
(3.3)

(F1,F2, η : k!1F1
∼−→ k!2F2) 7−→ (l!2F2,F1, α : i∗1j1,∗l

!
2F2 −→ F1[1]),

where α is obtained as follows. One applies the (k1,∗, k
!
1) adjunction to the composite:

k∗2l2,∗l
!
2F2

gF2−→ k!2F2[1]
η−1

−→
≃

k!1F1[1]

to obtain:

α : i∗1j1,∗l
!
2 ≃ i∗1i2,∗l2,∗l

!
2F2 ≃ k1,∗k

∗
2l2,∗l

!
2F2 −→ F1[1],

where we used the base change with respect to (3.1) and the compatible isomorphisms

k1,!
∼−→ k1,∗, i2,!

∼−→ i2,∗. It is straight-forward to check that Ψ and Φ are inverse to each
other. □

Proof of Proposition 3.1. Notice that since each ıp is fp-closed, Lemma 1.18 implies that
(ıp)∗ : D(Xp) ↪→ D(X ) is a closed subcategory.

From §1.5.5 it is clear that we have equivalences:

colim
p∈P

D(Xp)
∼−→ D(X )

∼−→ lim
p∈P

D(Xp).
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We now check conditions (ii) and (iii) from Definition A.4. Notice that for any p, q ∈ P
we have:

(3.4) Xp ∩Xq = ∪r⩽p and r⩽qXr.

The following

D(Xp ∩Xq) D(Xp)

D(Xq) D(Fl)

ıp,∗

iq,∗

is a pullback square. Then (3.4) implies D(Xp ∩Xq) ≃ D(∪r⩽p and r⩽qXr). By iterating

Lemma 3.2 we have that
⋃

r⩽p and r⩽q D(Xr)
∼−→ D(∪r⩽p and r⩽qXr). This gives condition

(iii) from Definition A.4.
Now by base change, the following diagram commutes:

D(Xp∩q) D(Xq)

D(Xp) D(X )

(ıp∩q,q)!

(ıp∩q,p)
∗

(ıp)!

(ıq)
∗ ,

thus we obtain condition (ii) from Definition A.4. □

3.2. Affine flag variety. We apply the results of §3.1 to the affine flag variety.

3.2.1. W̆ -stratification of D(Fl). We keep the notations of §2.3.1. Condition (i) of Propo-
sition 3.1 is clear, whereas Condition (ii) follows from Remark 2.8. Thus, we have:

Lemma 3.3. The functor:

(3.5) W̆ −→ ClD(Fl), w 7−→ (ıw)∗ : D(Flw) ↪→ D(Fl).

gives a W̆ -closed stratification of D(Fl).

In the rest of this section we spell out explicit the consequences of §A.3 and §A.4 for the
stratification (3.5).

3.2.2. Closed glueing. We work out the details of the construction of §A.4.2 for (3.5).
For w ∈W , we have:

colim
w′∈W̆ ̸⩾w

D(Fl⩽w′) ≃ lim
w′∈(W̆ ̸⩾w)op

D(Fl⩽w′)

where the limit is computed in PrL with the connecting morphisms given by ∗-pullback.
Let Fl∂w =

⋃
w′ ̸⩾w Flw′ then {Fl⩽w′ → Fl∂w}w′ ̸⩾w is a Zariski cover, thus by descent, we

obtain that

colim
w′∈W ̸⩾w

D(Fl⩽w′) = D(Fl∂w).
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Hence, the recollement diagram:

D(Fl)w D(Fl⩽w) D(Fl∂w),

πL
w

πR
w

πw

(i∂w)∗

(i∂w)!

(i∂w)∗

defining the strata D(Fl)w, is equivalent to:

D(Flw) D(Fl⩽w) D(Fl∂w).

(jw)!

(jw)∗

j!w

(i∂w)∗

(i∂w)!

(i∂w)∗

For each w ∈W we have the composite adjunctions:

Ψw : D(Flw) D(Fl⩽w) D(Fl) : νw
(jw)!

(jw)!

(i⩽w)∗

(i⩽w)!
,

since (i⩽w)!
∼−→ (i⩽w)∗, we have Ψw = (iw)! and νw = (iw)

!.
Notice that given w1 ⩽ w2 ⩽ w3 we obtain a diagram:

D(Flw2)

D(Flw3) D(Flw1)

(jw1 )
!◦(jw2 )!

(jw1 )
!◦(jw3 )!

(jw2 )
!◦(jw3 )!

Here the double arrow means there is a (not necessarily invertible) 2-morphism (jw1)
! ◦

(jw2)! ◦ (jw2)
! ◦ (jw3)! → (jw1)

! ◦ (jw3)!.

More generally, the functors j!w′ ◦(jw)! assemble into a right-lax W̆ op-module(see [3, §A.1]
for a precise definition):

W̆ op PrL.D(Fl−)
r.lax

From Theorem A.9 we obtain:

(3.6) D(Fl)
∼−→ liml.lax

r.lax.W opD(Flw),

which can be more concretely computed as the strict colimit:

(3.7) colim
sd(W op)op

D(Flw)
∼−→ D(Fl).

3.2.3. Open decomposition. For each w ∈ W̆ , let Fl⩾w :=
⊔

w′⩾w Flw′ ≃
⊔

w′ ̸⩽w Fl⩽w′ . Note

that Fl⩾w = (Fl\Fl⩽w)∪Flw, Flw ↪→ Fl is a qcqs open since (Fl\Fl⩽w) ↪→ Fl is a qcqs open
as the complement of a fp-closed morphism. Thus the embedding i⩾w : Fl⩾w ↪→ Fl is a qc
qs as the union of two such. The functor i⩾w,! : D(Fl⩾w) ↪→ D(Fl) exhibits D(Flw) as an

open subcategory, i.e. we have adjunctions (i⩾w,!, i
!
⩾w) and (i!⩾w, i⩾w,∗).

The same argument as in the proof of Lemma 3.3 gives the following result:
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Lemma 3.4. The functor:

(3.8) W̆ op −→ OpD(Fl); w 7−→ D(Fl⩾w) D(Fl)

(i⩾w)!

(i⩾w)∗

i!⩾w

determines a W̆ op-stratification of D(Fl).

We could try to perform the open glueing (see §A.4.1) associated with this data, how-

ever, since W̆ op is not down-finite, the data obtained would not be equivalent to the open
stratification, i.e. it would not recover the category D(Fl) (see Figure 1).

3.2.4. Reflected glueing. In this section we follow the procedure of constructing reflected
open glueing diagrams as described in [3, §1.10]. Instead of using the open glueing functors
(A.4), i.e. ∗-pushforward and pullback, we can consider the reflected geometric localization
diagrams:

(3.9) λw : D(Flw) D(Uw) D(Fl) : Ψw

(kw)!

(kw)!

(i⩾w)!

(i⩾w)!
.

In this case these functors are simply given by λw = (ıw)! and Ψw = (ıw)
!. Thus, for w → w′

in W̆ op, i.e. w′ ⩽ w, the reflected glueing functors are:

Γ̆w
w′ : D(Flw)

(ıw)!
↪→ D(Fl)

(ıw′ )!

↪→ D(Flw′).

As before, these assemble into a reflected glueing diagram:

W̆ op PrL˘̊
G

r.lax
(D(Fl)) .

By [3, Theorem F], we have an equivalence:

(3.10) colim
sd(W̆ op)op

˘̊
G (D(Fl))

∼−→ D(Fl).

Moreover, Remark A.10 implies that (3.10) coincindes with the glueing given by (3.7).

3.3. Decomposition of D
(

LG
Adθ(LG)

)
. Recall from §2.3 that LG is an ind-placid scheme.

We have an action of LG on itself by θ-conjugation. We let LG
Adθ(LG) denote the (étale)

quotient stack, i.e. the étale sheafification of the prestack quotient
(

LG
Adθ(LG)

)
PStk

. We

claim that LG
Adθ(LG) is a sifted-placid stack. Indeed, since the action AdIwθ : Iw × LG→ LG

factors through LGO for some Newton point, hence AdIwθ is ind-fp proper and by Remark

1.13 (4) we obtain that LG
Adθ(Iw) is a sifted-placid stack. Since the canonical projection

π :
LG

Adθ(Iw)
−→ LG

Adθ(LG)

is surjective ind-fp proper, we obtain that LG
Adθ(LG) is a sifted-placid stack as well.

For every straight θ-conjugacy class O we denote by

jO :
LGO

Adθ(LG)
↪→

LGO
Adθ(LG)

and iO :
LGO

Adθ(LG)
↪→ LG

Adθ(LG)
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the inclusions of the quotients of (2.3). We claim that jO is qc qs and that iO is fp-closed.
Indeed, since the notion of fp-closed embedding is local for the étale topology, it is enough
to check that the morphisms(

LGO
Adθ(LG)

)
PStk

↪→
(

LG

Adθ(LG)

)
PStk

at the level of prestack quotients is finitely presented, which directly follows from Theorem
2.7. The argument for jO is similar. We pose iO := iO ◦ jO.

Notice that D
(

Ğ
Adθ(Ğ)

)
is very far from the product

∏
OD

(
ĞO

Adθ(Ğ)

)
, as pushforward

of sheaves coming from different Newton strata can interact. Roughly speaking, the best
description of this category we can hope for is a form of semi-orthogonal decomposition.

Theorem 3.5. The collection of functors:

(3.11) (iO)∗ : D

(
LGO

Adθ(LG)

)
−→ D

(
LG

Adθ(LG)

)
determines a closed W̆ �θ W̆ -stratification of D

(
LG

Adθ(LG)

)
. Moreover, the O-strata of the

corresponding semi-orthogonal decomposition is given by:

D

(
LG

Adθ(LG)

)
O
≃ D

(
LGO

Adθ(LG)

)
and closed glueing functors corresponding to O ≼ O′ are given by (iO′)! ◦ (iO)!.

Remark 3.6. We call this decomposition the Newton decomposition of D
(

Ğ
Adθ(Ğ)

)
.

Proof. By Theorem 2.7, the collection {LGO}O∈W̆�θW̆
satisfy the conditions of Proposition

3.1. Thus, the assignment (3.11) gives a W̆ �θ W̆ -indexed closed stratification.

We now compute the O-strata. Let LG∂O
AdθLG

:=
⋃
O′ ̸≽O

LGO′
Adθ(LG) and i∂O : LG∂O

AdθLG
↪→ LG

AdθLG

the associated fp-closed embedding. One has an equivalence:

colim
O′ ̸≽O

D

(
LGO′

Adθ(LG)

)
∼−→ D

(
LG∂O

Adθ(LG)

)
.

Thus, the recollement diagram defining D
(

LG
Adθ(LG)

)
O

becomes:

(3.12) D
(

LG
Adθ(LG)

)
O

D
(

LGO
Adθ(LG)

)
D
(

LG∂O
Adθ(LG)

)πL
O

πR
O

πO

(i∂O)∗

(i∂O)!

(i∂O)∗ .

By Proposition A.1 (2) we have that D
(

LG
Adθ(LG)

)
O

is equivalent to:{
F ∈ D

(
LGO

Adθ(LG)

)
|Map(F , (ı∂O)∗(G )) = 0, for allG ∈ D

(
LG∂O

Adθ(LG)

)}
.

Since i∂O is fp-closed, by adjunction we obtain that (i∂O)
∗(F ) ≃ 0. Thus, (1.31) implies

that F ≃ (jO)!(F
′) for some F ′ ∈ D

(
LGO

Adθ(LG)

)
.
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This shows that the recollement diagram (3.12) is equivalent to:

D
(

LGO
Adθ(LG)

)
D
(

LGO
Adθ(LG)

)
D
(

LG∂O
Adθ(LG)

)(jO)!

(jO)∗

(jO)!

(i∂O)∗

(i∂O)!

(i∂O)∗ .

One can then directly check that the glueing functors are as claimed. This finishes the
proof. □

3.4. Further comments. We point out that as a consequence of Theorem 3.5 we have:

colim
O∈W̆�θW̆

D

(
LGO

Adθ(LG)

)
∼−→ D

(
LG

Adθ(LG)

)
.

Concretely, it means that any sheaf F ∈ D
(

LG
Adθ(LG)

)
is (iO)∗(FO) for some FO ∈

D(
LGO

Adθ(LG)). Moreover, compact objects in D
(

LG
Adθ(LG)

)
are given by direct images of

Dc(
LGO

Adθ(LG)) for some O.
Alternatively, the theory of stratified stable ∞-categories gives a different description

of sheaves on LG
Adθ(LG) in terms of their values on the locally closed disjoint strata of LG.

Indeed, by applying Theorem A.9 to Theorem 3.5 we obtain the following:

Corollary 3.7. The category D
(

LG
Adθ(LG)

)
can be recovered from its locally closed pieces as

the following strict colimit:

colim
sd(W̆�θW̆ )

D

(
LGO

Adθ(LG)

)
∼−→ D

(
LG

Adθ(LG)

)
.

Let’s unwind this statement. First, for a poset P one has:

sd(P) := {φ : [n] −→ P | φ injective morphism of posets}.

Notice that as a subset of the power set of P, sd(P) is itself a poset. Given F ∈ D
(

LG
Adθ(LG)

)
,

let g(F ) ∈ lim l.lax
r.lax,W̆�θW̆

G (F ) denote the data of7(
{i!O(F ) ∈ D(

LGO
Adθ(LG)

)}O∈W̆�θW̆
, {αO1,O2 : ΓO1

O2
◦ i!O1

(F ) −→ i!O2
(F )}O1≽O2

)
,

where αO1,O2 are induced by the canonical counit morphisms, satisfying certain compati-
bilities. Then one has:

colim
sd(O∈W̆�θW̆ )

i!O(F )
∼−→ F .

In fact, any collection of sheaves and morphisms:(
{FO ∈ D(

LGO
Adθ(LG)

)}O∈W̆�θW̆
, {αO1,O2 : ΓO1

O2
(FO1) −→ FO2}O1≽O2

)
satisfying conditions analogous to those specified in Example [3, Example A.5.3. (2)] de-

termines a sheaf F := colimsd(O∈W̆�θW̆ ) FO in D
(

LG
Adθ(LG)

)
.

7Notice that for O1 ̸≽ O2 the functor ΓO1
O2

vanishes, so by Remark A.8 we don’t need αO1,O2 in this case.
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Furthermore, let E ∈ D
(

LG
Adθ(LG)

)
denote another sheaf, then one has an equivalence (cf.

[3, Theorem A (4)]):

MapD( LG
Adθ(LG)

)(F ,E ) = lim
([n]

φ−→W�θW̆ )∈sd(W̆�θW̆ )op

(
Map

D(
LGφ(n)
Adθ(LG)

)
(Γφ ◦ i!φ(0)(F ), i!φ(0)(E ))

)

where Γφ := i!φ(n) ◦ (iφ(n−1))! ◦ · · · ◦ i
!
φ(1) ◦ (iφ(0))!.

4. Categorical cocenter of affine Hecke category

4.1. Categorical cocenter. We start by recalling some general categorical constructions.
Given a monoidal presentable stable ∞-category (C, ⋆) the categorical cocenter Tr(C) of
C is defined as Tr(C) := C ⊗C⊗Crev C, where Crev denotes C with the reversed monoidal
structure. The tensor product is taken in the category LincatE . It receives a universal
map tr : C → Tr(C). In the literature Tr(C) is also referred to as the categorical trace or
categorical Hochschild homology of C.

Now we discuss the twisted cocenter. Let Φ : C → C be a (right-lax) monoidal endo-
functor. We denote by C-mod the ∞-category of left C-modules in presentable stable ∞-
categories. One obtains Φ∗ : C-mod → C-mod which is represented by ΦC ∈ C ⊗ Crev-mod,
i.e. ΦC = C with the left action of C via Φ and the right action as usual. We define (following
[9, §3.7.1] [20, §7.3.4]) the Φ-twisted categorical cocenter of C as:

(4.1) Tr(Φ, C) := C ⊗
C⊗Crev

ΦC.

We denote by tr : C → Tr(Φ, C) the canonical map sendsing c ∈ C to the image of 1C ⊗ c in
Tr(Φ, C).

Let ∆ denote the simplex category, i.e. the objects are non-empty totally ordered finite
sets [n] := {0 < · · · < n} for n ⩾ 0 and the morphisms are order-preserving functions. To
concretely calculate (4.1) we consider the bar resolution of C as a right C ⊗ Crev-module,
given by:

Bar(C)• : ∆op −→ LincatE , Bar(C)n := C⊗n ⊗ C ⊗ Crev ≃ C⊗(n+2)

with morphisms induced by the monoidal structure. By tensoring with (−) ⊗
C⊗Crev

ΦC one

obtains:

colim
∆op

Bar(C)• ⊗
C⊗Crev

ΦC
∼−→ Tr(Φ, C).

One can simplify the above resolution by level-wise using the isomorphism:

C⊗(n+2) ⊗
C⊗Crev

ΦC
∼−→ C⊗n ⊗ ΦC

(a0, a1, · · · , an, an+1, b) 7−→ (a1, · · · , an,Φ(an+1)ba0).

The resulting simplicial object in the ∞-category of presentable stable ∞-categories is the
(twisted) cyclic bar construction:

(4.2) CΦ,• : ∆
op −→ LincatE , [n] 7−→ C⊗n ⊗ ΦC,
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where the face morphisms C⊗n+1 ⊗ ΦC → C⊗n ⊗ ΦC are given by:

d0,n := idC⊗n ⊗ Φ(−) ⋆ (−)
di,n := idC(i−1) ⊗ (−) ⋆ (−)⊗ idC⊗(n−i)⊗ΦC for 0 < i < n+ 1,

dn+1,n := idC⊗n ⊗ Φ(−) ⋆ (−)1,

where Φ(−) ⋆ (−)1 means we apply the tensor product with ΦC as the left factor and the
first copy of C as the right factor. Thus, we have (cf. [28, Theorem 5.5.3.11 and Remark
5.5.3.13]):

colim
∆op

CΦ,•
∼−→ Tr(Φ, C).

Later we will also need the degeneracy morphisms:

ci,n := idC⊗i ⊗ 1C ⊗ idC⊗(n−i)⊗ΦC : C
⊗n ⊗ ΦC −→ C⊗(n+1) ⊗ ΦC,

where 1C ∈ C is the unit of the monoidal structure of C, for 0 ⩽ i ⩽ n.

4.2. Beck–Chevalley criterion. To have a more concrete understanding of the cocenter
we would like to realize it as a full subcategory of a more accessible category. For that, we
recall an abstract result of Lurie that allows us to do that. Let ∆+ denote the augmented
simplex category, i.e. the objects are (possibly) empty totally ordered finite sets with order-
preserving functions as morphisms. By convention, [−1] denotes the empty set. Given
an augmented simplicial object D+

• : ∆op
+ → LincatE , one says that D+

• satisfies the Beck–
Chevally condition if for every n,m ⩾ −1 and every morphism α : [n]→ [m] in ∆+, inducing
α+ : [n+ 1] = [0] ⋆ [n]→ [0] ⋆ [m] = [m+ 1], the induced diagram:

D+
m+1 D+

m

D+
n+1 D+

n

d0,m

D+
α+ D+

α

d0,n

is vertically right adjointable (see §1.1 (g)). The following result is proved in [28, Corollary
4.7.5.3] and [21, Proposition 2.3.3]:

Proposition 4.1. Given a simplicial object D• : ∆op → LincatE and an extension D+
• :

∆op
+ → LincatE, i.e. D+

• |∆op = D•, of D• to an augmented simplicial object such that:

(i) the unique face map D+
0 → D

+
−1 admits a right adjoint,

(ii) D+
• satisfies the Beck–Chevalley condition.

Then the canonical morphism:

colim
∆op

D• −→ D+
−1

is fully faithful and admits a right adjoint. Moreover, the category colim∆op D• is generated
under colimits by the essential image of D+

0 → D
+
−1.

In Proposition 4.1 the last statement follows by applying [28, Proposition 4.7.3.14] to the

adjunction F : D+
0 colim∆op D• : G , where F : C+

0 → colim∆op D• is the canonical

morphism to the colimit and G its right adjoint, whose existence follows from the proof of
Proposition 4.1 as in [21, Proposition 2.3.3].

More concretely, here is what one needs to check the Beck–Chevaley condition. Firstly,
notice that any morphism in the category ∆ is a composition of two types of morphisms:
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degeneracy morphisms and face morphisms. Thus, by functoriality of passing to right
adjoints, we only need to check that for every n ⩾ 0 and 0 ⩽ i ⩽ n + 1 the induced
diagrams:

Dn+1 Dn

Dn+2 Dn+1

d0,n

ci+1,n+2 ci,n+1

d0,n+1

and

Dn+2 Dn+1

Dn+1 Dn

d0,n+1

di+1,n+1 di,n

d0,n

are vertically right adjointable.
Secondly, notice that an extension of D• to an augmented simplicial object D+

• : ∆op
+ →

LincatE , is the data of a presentable stable ∞-category D+
−1, a functor d0,−1 : D0 → D+

−1
and an isomorphism

α : d0,−1 ◦ d0,0
≃−→ d0,−1 ◦ d1,0.

These are required to satisfy higher compatibilities with the isomorphisms determining
D• : ∆op → LincatE , e.g. the following diagram of isomorphisms commutes:

d0,−1d0,1d0,2 d0,−1d0,1d1,2 d0,−1d1,1d1,2

d0,−1d1,1d0,2 d0,−1d0,1d2,2 d0,−1d1,1d2,2

β2

α

α

β0

β1 α

,

and so on for higher compositions. We emphasize that there is no general way to construct
D+
−1 and d0,−1.
Finally, the Beck–Chevalley condition for C−1 requires that the diagram:

D1 D0

D0 D+
−1

d0,0

d1,0 d0,−1

d0,−1

is vertically right adjointable. Notice that there is no diagram involving degeneracy maps
and the category D+

−1, since there are no morphisms from [−1] to [0] in ∆+.

4.3. Affine Hecke category. Let X = Iw\LG/Iw, in this section we focus on the affine

Hecke category H = D(X). Notice that for each w ∈ W̆ by Remark 1.13 (2) one has a
placid atlas:

hw : LG⩽w −→ Iw\LG⩽w/Iw.
In fact, since one has a pro-unipotent radical placid group subscheme Iwu ↪→ Iw, whose
quotient Iw/Iwu is of finite presentation, one concludes that hw is essentially cohomologically

smooth, so Iw\LG⩽w/Iw is very placid. Thus, colimw∈W̆ Iw\LG⩽w/Iw
∼−→ X is an ind-very

placid stack.
We first explain the monoidal structure of H. The placid group scheme Iw × Iw acts

on Iw\LG × LG/Iw via ((h1, h2), [g1, g2]) 7→ [g1h
−1
1 , h2g2]. Let Z = Iw\LG ×Iw LG/Iw be

the quotient stack of Iw\LG×LG/Iw with respect to the diagonal Iw-action. We have the
following diagram:

X ×X Z X,a b

where a is induced by the quotient with respect to Iw sitting diagonally in Iw × Iw and b
is induced by the multiplication map.
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The monoidal structure is given by the composite:

(4.3) ⋆ : D(X)⊗D(X)
⊠−→ D(X ×X)

b∗◦a!−→ D(X),

where ⊠ : D(X) ⊗ D(X) → D(X × X) is the external tensor product encoded in the lax
monoidal structure of (1.27). In general, the external tensor product functor is only fully
faithful, see [20, Lemma 10.85, (10.48)]. However, for the affine Hecke category we have:

Lemma 4.2. [20, §3.2] The external tensor product ⊠ : D(X)⊗D(X)→ D(X×X) induces

an equivalence of presentable stable ∞-categories. Thus, Hn ≃ D(X(n+1)) for n ⩾ 0.

The automorphism θ of LG induces an automorphism of X that we still denote as θ. Let
Φ = θ! : H → H denote the induced monoidal functor on H.We will compute the Φ-twisted
cocenter of H using Proposition 4.1.

The correspondence Iw\LG/Iw
p←− LG

Adθ(Iw)

q−→ LG
Adθ(LG) gives a functor:

(4.4) CH := q∗ ◦ p! : H −→ D

(
LG

Adθ(LG)

)
.

By definition of the trace, one has a factorization:

CH : H tr−→ Tr(Φ,H) F−→ D

(
LG

Adθ(LG)

)
.

We now state the main result of this section.

Theorem 4.3. (1) The canonical functor:

(4.5) F : Tr(Θ,H) −→ D

(
Ğ

Adθ(Ğ)

)
is fully faithful and admits a right adjoint. Moreover, Tr(Θ,H) is generated under
colimits by the essential image of CH.

(2) For each O ∈ W̆ �θ W̆ , let Tr(Θ,H)⪰O be the subcategory of Tr(Θ,H) spanned by
sheaves F such that (iO′)∗(F ) = 08 for all O′ ̸≽ O. The assignment

W �θ W̆ −→ OpTr(Θ,H), O 7−→ Tr(Θ,H)⪰O

determines an open W̆ �θ W̆ -stratification of Tr(Θ,H).
(3) The stratum Tr(Θ,H)O of the semi-orthogonal decomposition consists of F ∈ Tr(Θ,H),

such that F ≃ (iO)!(G ) for some G ∈ D
(
LGO
LG

)
. More concretely, Tr(Θ,H)O is gen-

erated under colimits by the essential image of qw,∗ ◦ p!w : D(Iw\LGw/Iw) → D
(
LG
LG

)
where w ∈ W̆ such that LGw ⊂ LGO and Iw\LGw/Iw

pw←− LGw
Adθ(Iw)

qw−→ LG
Adθ(LG) .

4.4. Beck-Chevalley condition for Tr(Θ,H). We first introduce some notations that
will be used in the proofs in this subsection. For n ⩾ 1 and 1 ⩽ i < j ⩽ n we let:

Wn := Xn, and Wn;i := Xi−1 × Z ×Xn−i,

and the morphisms:

an;i : Wn;i −→Wn+1 (resp. bn;i : Wn;i −→Wn)

8This should be denoted by (iO′)
∗ ◦ F (F ) we drop F from the notation since it is fully faithful.
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denote the morphism obtained by applying a (resp. b) to the Z factor and the identity in
all other factors.

For i ̸= j, consider Wn;i,j and the morphisms an;i,j , an;i,j , bn;i,j , and bn;i,j defined such
that all of the following are pullback diagrams:

Wn;i,j Wn;i

Wn;j Wn

bn;i,j

bn;i,j bn;i

bn;j

,

Wn;i,j Wn;i

Wn+1,j+1 Wn+1

bn;i,j

an;i,j an;i

bn+1;j+1

, and

Wn;i,j Wn;j

Wn+1,i Wn+1

bn;i,j

an;i,j an;j

bn+1;i

.

We will also need:

θk : Wn −→Wn and θk : Wn;i −→Wn;i,

which applies the automorphism θ to the k-th factor of X, where k ̸= i. We abuse notation
and do not distinguish between these morphisms to keep the notation light.

The next two Lemmas check the part of Beck–Chevalley conditions that only involve the
original simplicial object given by the twisted cyclic bar construction.

Lemma 4.4. For n ⩾ 0 and 0 ⩽ i ⩽ n, the degeneracy morphism ci,n+1 : Hn → Hn+1

admits a right adjoint cRi,n+1 and the induced diagram

(4.6)

Hn+1 Hn

Hn+2 Hn+1

d0,n

d0,n+1

cRi+1,n+2
cRi,n+1

commute.

Proof. Let e : Speck → LG be the identity morphism, it induces an ind-fp proper map
ı : pt

Iw ↪→ Iw\LG/Iw, where pt
Iw ≃ Iw\LG⩽0/Iw and 0 ∈ W̆ is the identity element. Thus,

the pushforward ı∗ is well-defined (see Lemma 1.17). The unity in D(X) is given by F0 :=
ı∗(ω pt

Iw
). Thus the functor ci,n+1 : D(Wn+1)→ D(Wn+2) is given by:

(F1, . . . ,Fn+1) 7−→ (F1, . . . ,Fi−1,F0,Fi, . . . ,Fn+1).

Notice that the map π : pt
Iw → pt is weakly cohomologically pro-smooth, since as discussed

in the beginning of §4.3 the cover pt → pt/Iw is essentially pro-unipotent. Thus, by
Proposition 1.21 one has an adjuction (π!, πren

∗ ).
Thus, we have the adjunction:

HomX2((idX × ı)∗(idX × π)!(F ),G1 ⊠ G2) ≃ HomX2(F , (idX × π)∗(idX × ı)!(G1 ⊠ G2)),

from which it is clear that the right adjoint cRi,n+1 to ci,n+1 is given by

cRi,n+1 : D(Wn+2) −→ D(Wn+1)

(F1, . . . ,Fn+2) 7−→ (F1, . . . ,Fi−1, (idX × π)∗(idX × ı)!(Fi ⊠Fi+1),Fi+2, · · · ,Fn+2).

Now we check that the diagram (4.6) commutes. Let ın;i : Wn → Wn+1 denote the

inclusion of the identity on the (i + 1)-th factor on the target. Notice that cRi,n+1 ◦ d0,n+1
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(resp. d0,n ◦ cRi+1,n+2) is given by pull-push along the bottom then the right side (resp. the

left then the upper side) of the following diagram:

(4.7)

Wn+2 Wn+1;n+1 Wn+1

Wn+2 × pt/Ĭ Wn+1;n+1 × pt/Ĭ Wn+1 × pt/Ĭ

Wn+3 Wn+2;n+2 Wn+2

θn+1◦an+1,n+1 bn+1;n+1

idWn+2
×π

ın+2,i+2

θn+1◦an+1;n+1

idWn+1;n+1
×π

bn+1,n+1

ın+1,i+1

idWn+1
×π

ın+1,i+1

θn+2◦an+2;n+2 bn+2;n+2

.

We obtain the chain of isomorphisms:

(bn+1,n+1)∗ ◦ a!n+1,n+1 ◦ θ!n+1 ◦ (idWn+2 × π)ren∗ ◦ ı!n+2,i+2

(bn+1,n+1)∗ ◦ (idWn+1;n+1 × π)ren∗ ◦ a!n+1,n+1 ◦ θ!n+1 ◦ ı!n+2,i+2

(idWn+1 × π)ren∗ ◦ (bn+1,n+1)∗ ◦ ı!n+1,i+1 ◦ a!n+2;n+2 ◦ θ!n+2

(idWn+1 × π)ren∗ ◦ ı!n,i+1 ◦ (bn+2,n+2)∗ ◦ a!n+2;n+2 ◦ θ!n+2,

≃

≃

≃

where the first isomorphism is base change for the upper-left square of (4.7) by Proposition
1.21 (i), the second isomorphism is Proposition 1.21 (iii), and the third isomorphism is base
change for the bottom-right square of (4.7) given by Lemma 1.17 (i).

This finishes the proof. □

Lemma 4.5. For n ⩾ 0 and 0 ⩽ i ⩽ n, the face morphism di,n : Hn+1 → Hn admits a
right adjoint dRi,n and the induced diagram

(4.8)

Hn+2 Hn+1

Hn+1 Hn

d0,n+1

d0,n

dRi+1,n+1 dRi,n

commutes.
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Proof. Consider the commutative diagrams:

(4.9)

Wn+3 Wn+2;n+2 Wn+2

Wn+2,i+1 Wn+1;i,n Wn+1,i

Wn+2 Wn+1;n+1 Wn+1

θn+2◦an+2;n+2 bn+2;n+2

(θn+2◦)an+2,i+1

bn+2;i

θn+1◦an+1;i,n+1

an+1;i,n+1

bn+1;i,n+1

bn+1;i,n

(η◦)an+1,i

bn+1;i

θn+1◦an+1;n+1 bn+1;n+1

,

where η : Wn+2 →Wn+2 is the cyclic permutation that sends the first factor into the second
factor, and so on. Here we use the notation:

(θn+2◦)an+2,i+1 =

{
an+2,i+1, if i < n+ 1,

θn+2 ◦ an+2;n+2, if i = n+ 1;

and

(η◦)an+1,i =

{
an+1,i, if i < n+ 1,

η ◦ an+1;n+1, if i = n+ 1.

Notice that for any m ⩾ 1, one has:

di,0 = (bm+1,m+1)∗ ◦ a!m+1;m+1 ◦ θ!m+1

di,m = (bm+1,i)∗ ◦ a!m+1;i+1 for 0 < i < m+ 1

dm+1,m = (bm+1,m+1)∗ ◦ a!m+1;m+1 ◦ η!.

Define:

dRi,0 := (θm+1)
ren
∗ ◦ (am+1;i+1)

ren
∗ ◦ b!m+1,i

dRi,m := (am+1;i+1)
ren
∗ ◦ b!m+1,i for 0 < i < m+ 1

dRm+1,m := ηren∗ ◦ (am+1;m+1)
ren
∗ ◦ b!m+1,m+1.

For all m ⩾ 0 and 0 ⩽ i ⩽ m + 1, the fibers of the morphism am+1;i : Wm+1;i → Wm+2

are isomorphic to the essentially pro-unipotent scheme Iw. Hence am+1;i is essentially pro-
unipotent, thus (am+1;i)

ren
∗ is well-defined and we have an adjunction:

a!m+1;i : D(Wm+1) D(Wm+2) : (am+1;i)
ren
∗ .

The morphisms bm+1;i : Wm+1;i →Wm+1 are ind-fp-proper, since their fibers are isomorphic
to Fl, so we obtain the adjunction:

(bm+1;i)∗ : D(Wm+1;i) D(Wm+1) : b
!
m+1;i .

Since η and θm are isomorphisms. We obtain that dRi,m is right adjoint to di,m.
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Now we check that the diagram (4.8) commutes. Notice that the top left and bottom
right squares in (4.9) are Cartesian. The natural base change map:

(bn+2;n+2)∗ ◦ a!n+2;n+2 ◦ θ!n+2 ◦ (an+2;i+1)
ren
∗ ◦ b!n+2;i

(bn+2;n+2)∗ ◦ (an+1;i,n+1)
ren
∗ ◦ a!n+1;i,n+1 ◦ θ!n+1 ◦ b!n+2;i

(an+1;i)
ren
∗ ◦ (bn+1;i,n+1)∗ ◦ b!n+1;i,n ◦ a!n+1;n+1 ◦ θ!n+1

(an+1;i)
ren
∗ ◦ b!n+1;i ◦ (bn+1;n+1)∗ ◦ a!n+1;n+1 ◦ θ!n+1

≃

≃

≃

is an isomorphism. Indeed, the first arrow is an isomorphism by Proposition 1.21 (i) and
since since bn+1;i is ind-fp-proper the the middle arrow is an isomorphism by Proposition 1.21
(iii) and the last arrow is an isomorphism by Lemma 1.17 (i). We have similar isomorphisms
when we include θn+2 or η in the edge cases. □

Now we need to define an augmented simplicial object H+
• : ∆op

+ → LincatE , whose
restriction to ∆op is the twisted cyclic Bar construction on H (see (4.2)). In our situation,
a natural candidate for the augmentation extension is (see (4.4) for the definition of CH):

CH : H0 −→ H+
−1 := D

(
LG

Adθ(LG)

)
.

Lemma 4.6. The functor H+
• : ∆op

+ → LincatE extends the twisted cyclic bar construction
on H to an augmented simplicial object. Moreover, the diagram:

(4.10)

H1 H0

H0 H+
−1

d0,0

d1,0 d0,−1

d0,−1

is vertically right adjointable.

Proof. Consider the commutative diagram:

(4.11)

(Iw\LG/Iw)2 Iw\LG×Iw LG/Iw Iw\LG/Iw

Iw\LG×Iw LG/Iw LG×IwLG
Adθ(Iw)

LG
Adθ(Iw)

Iw\LG/Iw LG
Adθ(Iw)

LG
Adθ(LG)

θ1◦a b

σ◦a

b

−→µ

←−µ
←−
h

−→
h

p

q

p q

where σ is the swap morphism and θ1 applies the automorphism θ on the first factor. Let

[(g, g′)] ∈ LG×IwLG
Adθ(Iw) , where (g, g′) ∈ LG × LG. The morphisms

−→
h ,
←−
h are define in (2.4),
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where −→µ and ←−µ are given by:

−→µ ([g, g′]) = ([g′, θ(g)]) and ←−µ ([g, g′]) = ([g, g′]),

Thus, one has:

d0,−1 ◦ d0,0 = q∗ ◦ p! ◦ b∗ ◦ a! ◦ θ!1 and d0,−1 ◦ d1,0 = q∗ ◦ p! ◦ b∗ ◦ σ! ◦ a!.

One can directly check that all the squares in (4.11) are Cartesian. Since b is ind-fp-proper,
by Lemma 1.17 (i) the commutativity of the diagram (4.10) follows from the base change
isomorphisms:

q∗ ◦ (
←−
h )∗ ◦ (←−µ )! ◦ a! ◦ θ!1

∼−→ q∗ ◦ p! ◦ b∗ ◦ θ!1 ◦ a!;

q∗ ◦ (
−→
h )∗ ◦ (−→µ )! ◦ σ! ◦ a! ∼−→ q∗ ◦ p! ◦ b∗ ◦ σ! ◦ a!.

Moreover, since a and p are weakly cohomologicall pro-smooth, one has functos:

σren
∗ ◦ aren∗ ◦ b! : D(X) −→ D(X2), and pren∗ ◦ q! : D(Y ) −→ D(X)

which are right adjoints to b∗◦σ!◦a! and q∗◦p!, respectively. Thus, to check that the diagram
(4.10) is vertically right adjointable we need to check that the canonical morphism:

b∗ ◦ a! ◦ σ! ◦ (θ1)ren∗ ◦ aren∗ ◦ b! −→ b∗ ◦ (−→µ )ren∗ ◦ (←−µ )! ◦ b!

≃ pren∗ ◦ (
−→
h )∗ ◦ (

←−
h )! ◦ p!

−→ pren∗ ◦ q! ◦ q∗ ◦ p!

is an isomorphism. The first arrow is an isomorphism by Proposition 1.21 (i), the middle
one follows from Proposition 1.21 (iii) and the last by Lemma 1.17 (i). □

4.5. Stratification of Tr(Θ,H). In this subsection, we get a stratification of the subcate-

gory Tr(Θ,H) from the stratification of D
(

LG
Adθ(LG)

)
.

We start with the following observation:

Lemma 4.7. The functor (4.5) makes Tr(Θ,H) into an open subcategory of D
(

LG
Adθ(LG)

)
.

Proof. We need to check that we have the following recollement diagram:

H Tr(Θ,H) D( LG
Adθ(LG))

trenh.

trenh.,RR

trenh.,R

F

FRR

FR .

First, the functors trenh.,R and FR exist as a consequence of Proposition 4.1.

Notice that D
(

LG
Adθ(LG)

)
and H are compactly generated (see Remark 1.16 2). Moreover,

by construction the functor (4.3) enconding the algebra structure of H and similarly the
functor enconding the (twisted) action of H on itself preserve compact objects. Hence [10,
Chapter 1, Corollary 8.7.4] implies that Tr(Θ,H) is also compactly generated. Since the
composite trR := trenh.,R ◦FR = pren∗ ◦ q! is continuous by construction (see Proposition
1.21), compact generation implies that the functors trenh.,R and FR admit further right
adjoints. □
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To check that the stratification of D
(

LG
Adθ(LG)

)
restricts to a stratification of Tr(Θ,H) it

is convenient to use a criterion established in [3].

Proposition 4.8. [3, Proposition 3.4.7] Let U• : P→ X be an open stratification of X and
let ı : Y ↪→ X be an open subcategory, such that for every p ∈ P we have factorizations:

(i)

Up ∩ Y Y

Up Xȷp

ıR ; (ii)

Up ∩ Y Up

Y Xı

ȷRp
.

Then the assignment:

P −→ OpY , P 7−→ Up ∩ Y
determines an open P-stratification of Y. Moreover, the pth stratum is given by Xp ∩ Y,
where Xp is the pth stratum of the stratification of X .

To apply this result to the decomposition of D
(

LG
Adθ(LG)

)
we need to rephrase the closed

stratification of Theorem 3.5 as an open stratification. We will follow the construction from
§A.3. For every O ∈ W̆ �θ W̆ , let

(4.12) ZO :=
⋃
O′ ̸≽O

LGO′ =
⊔
O′ ̸≽O

LGO′ , and LG≽O :=
⋃
O′≽O

LGO′ .

We denote by

pO :
ZO

Adθ(LG)
↪→ LG

Adθ(LG)
and i≽O :

LG≽O
Adθ(LG)

↪→ LG

Adθ(LG)

the induced fp-closed embedding and qc qs open complement. Notice that by Lemma 3.2,
we have ⋃

O′ ̸≽O
D

(
LGO′

Adθ(LG)

)
∼−→ D

(
ZO

Adθ(LG)

)
.

Thus, by applying the open-closed correspondence of §A.3 to the closed stratification

(3.11) we obtain the category R
(
D
(

LG
Adθ(LG)

))
O
, which can be concretely described as:{

F ∈ D

(
LG

Adθ(LG)

)
| MapD( LG

Adθ(LG)
)(F , (pO)∗G ) for all G ∈ D

(
ZO

Adθ(LG)

)}
.

By the adjunction ((pO)
∗, (pO)∗) and (1.31) we have that F ≃ (i≽O)!(F≽O) for some

F≽O ∈ D
(

LG≽O
Adθ(LG)

)
.

This implies that for every O ∈ W̆ �θ W̆ , we have the following recollement diagram:

D
(

ZO
Adθ(LG)

)
D
(

LG
Adθ(LG)

)
D
(

LG≽O
Adθ(LG)

)
(pO)∗

p∗O

p!O

(i≽O)!

(i≽O)!

(i≽O)∗

.
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By Proposition A.6 one obtains an open (W̆ �θ W̆ )op-stratification of D
(

LG
Adθ(LG)

)
:

(W̆ �θ W̆ )op −→ Op
D( Ğ

Adθ(Ğ)
)
, O 7−→ D

(
LG≽O

Adθ(LG)

)
.

Now for every O ∈ W̆ �θ W̆ we let:

Tr(Θ,H)⪰O := D

(
LG≽O

Adθ(LG)

)
∩ Tr(Θ,H).

Concretely, we have:
(4.13)

Tr(Θ,H)⪰O ≃
{

F ∈ Tr(H,Θ) | F (F ) ≃ (i≽O)!(G ) for some G ∈ D

(
LG≽O

Adθ(LG)

)}
and Lemma 1.18 implies that we also have:

(4.14) Tr(Θ,H)⪰O ≃ {F ∈ Tr(H,Θ) | (pO)∗ ◦ F (F ) = 0} .

To obtain an open (W̆ �θ W̆ )op-stratification of Tr(Θ,H) we need to check conditions
(i) and (ii) from Proposition 4.8. Condition (i) uses the details of the definiton of LGO,
whereas (ii) requires some nontrivial results on what the Harish-Chandra morphism does
to sheaves coming from a given strata in the affine Hecke category (see Lemma 4.10 below).

Lemma 4.9. For every O ∈ W̆ �θ W̆ we have the following factorization:

Tr(Θ,H)⪰O Tr(Θ,H)

D
(

LG≽O
Adθ(LG)

)
D
(

Ğ
Adθ(Ğ)

)
πL
O

FR .

Proof. The functor FR is hard to describe directly, so we use the following trick. Let
HO := {F ∈ H | (pO)∗ ◦ CH(F ) = 0}. Notice that the restriction of tr to HO factors

through Tr(Θ,H)⪰O and D
(

LG≽O
Adθ(LG)

)
. So we have a commutative diagram:

(4.15)

HO H

Tr(Θ,H)⪰O Tr(Θ,H)

D
(

LG≽O
Adθ(LG)

)
D
(

LG
Adθ(LG)

)

πL
H,O

trO tr

πL
Tr,O

FO F

(i≽O)!

,
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where the top two horizontal arrows are simply the canonical inclusions. By passing to
right adjoints for the vertical maps we obtain that the following lax-commutative diagram:

(4.16)

HO H

Tr(Θ,H)⪰O Tr(Θ,H)

D
(

LG≽O
Adθ(LG)

)
D
(

LG
Adθ(LG)

)

πL
H,O

(trO)R

πL
Tr,O

trR

FR
O

(i≽O)!

FR

.

SinceHO generates Tr(Θ,H)⪰O, the diagram (4.15) directly implies that the upper square
of (4.16) commutes.

Now we claim that the outer diagram of (4.16) also commutes. Concretely, we need to

check that CHR ◦ (i≽O)! : D
(

LG≽O
Adθ(LG)

)
→ H factors through HO, i.e. that

(pO)
∗ ◦ CH ◦ CHR ◦ (i≽O)! = 0.

By (4.12) this is equivalent to checking that

(iO′)
∗ ◦ q∗ ◦ p! ◦ pren∗ ◦ q! ◦ (i≽O)! = 0 for all O′ ̸≽ O.

Let aO′ : LGO′ →
LGO′

Adθ(Iw) →
LGO′

Adθ(LG) be the natural quotient map, by descent (1.24) and

Remark 1.16 (1), it is enough to check that

(aO′)
! ◦ (iO′)

∗ ◦ q∗ ◦ p! ◦ pren∗ ◦ q! ◦ (i≽O)! = 0.

Let w′ ∈ W̆ be a minimal length representative in the orbit [w′]θ = O′ and recall the

presentation (2.8) and let iO
′

u,⩽[w′]θ
: LGu,⩽[w′]θ ↪→ LGO′ . To check that a sheaf F ∈

D(LGO′) vanishes, it is enough to check that (iO
′

u,⩽[w′]θ
)!F vanishes for every u ∈ W̆ . Indeed,

it is enough to check that the ∗-restriction of F to each fp-closed LG⩽u,⩽[w′]θ ↪→ LGO′

vanishes, and since LG⩽u,⩽[w′]θ = ⊔v′⩽u,⩽[w′]θ , by induction it is enough to check that the

∗-restrictions to each locally closed LGu,⩽[w′]θ vanishes. Namely, that for every u ∈ W̆ we
need to prove that:

(4.17) (fu,w′)∗ ◦ q! ◦ q∗ ◦ p! ◦ pren∗ ◦ q! ◦ (i≽O)! ≃ 0 for all O′ ̸≽ O.

Consider the diagram:

Iw\(LGu ×Iw LG⩽w′)/Iw Iw\(LG×Iw LG)/Iw Iw\LG/Iw

LGu ×Iw FL⩽w′ LG×IwLG
Adθ(Iw)

LG
Adθ(Iw)

LGu,⩽[w′]θ
LG

Adθ(Iw)
LG

Adθ(LG)

fH
u,w′ b

µu,w′

mu,w′

f Iw
u,w′

µ

←−
h

−→
h

p

q

fu,w′ q

,
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where all the squares are Cartesian. We notice that we have:

(fu,w′)∗ ◦ q! ◦ q∗ ◦ p! ◦ pren∗ ◦ q! ≃ (fu,w′)∗ ◦
←−
h ∗ ◦

−→
h ! ◦ p! ◦ pren∗ ◦ q!

≃ (mu,w′)∗ ◦ (f Iw
u,w′)∗ ◦

−→
h ! ◦ p! ◦ pren∗ ◦ q!

≃ (mu,w′)∗ ◦ (µu,w′)! ◦ (fHu,w′)∗ ◦ b! ◦ pren∗ ◦ q!

≃ (mu,w′)∗ ◦ (µu,w′)! ◦ (fHu,w′)∗ ◦ µren
∗ ◦

−→
h ! ◦ q!

≃ (mu,w′)∗ ◦ (µu,w′)! ◦ (µu,w′)ren∗ ◦ (f Iw
u,w′)∗ ◦

−→
h ! ◦ q!

≃ (mu,w′)∗ ◦ (µu,w′)! ◦ (µu,w′)ren∗ ◦ (mu,w′)! ◦ (fu,w′)∗ ◦ q!,

where the base change statement for ∗-pullback hold because the corresponding morphisms
are open.

From the following commutative diagram:

LGu,⩽[w′]θ

LGO′
Adθ(Iw)

LG
Adθ(Iw)

LGO′
Adθ(LG)

LG
Adθ(LG)

fu,w′
fO′
u,w′

qO′

iIw
O′

q

iO′

,

we obtain that:

(fu,w′)∗ ◦ q! ◦ (i≽O)! ≃ (fO
′

u,w′)∗ ◦ (iIwO′)
∗ ◦ q! ◦ (i≽O)!

≃ (fO
′

u,w′)∗ ◦ (qO′)
! ◦ i∗O′ ◦ (i≽O)!

which vanishes for O′ ̸≽ O. This gives (4.17) and finishes the proof. □

We separate the crucial calculation necessary to check condition (ii) of Proposition 4.8
in the following:

Lemma 4.10. Let w ∈ W̆ and s ∈ S̆. Consider the diagram:

(4.18) Iw\LGw/Iw
LGw

Adθ(Iw)
LG

Adθ(LG) .
pw qw

Set w′ = swθ(s) and Fw := qw,∗ ◦ p!w(ωIw\LGw/Iw).

(1) If ℓ(w′) = ℓ(w), then Fw = Fw′.

(2) If ℓ(w′) < ℓ(w), then one has a cofiber-fiber sequence:

Fsw[2]⊕Fsw[1] −→ Fw −→ Fw′ [2].
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Proof. Without loss of generality, we may assume that sw < w. Consider the following
diagram:

Iw\LGw/Iw
LGw

Adθ(Iw)

pw
oo

qw

((

Iw\LGs ×Iw LGsw/Iw

∼= m′

OO

f ′∼=
��

LGs×IwLGsw
Adθ(Iw)

p′
oo

f∼=
��

qw◦m
//

∼= m

OO

LG
Adθ(LG) .

Iw\LGsw ×Iw LGθ(s)/Iw
LGsw×IwLGθ(s)

Adθ(Iw)

p′′
oo

qw◦m

66

Here A ×Iw B is the quotient of A × B by the Iw-action defined by i(a, b) = (ai−1, ib), p′

and p′′ are the projection maps from −
Adθ(Iw) to Iw\−/Iw associated to Adθ(Iw) ⊂ Iw× Iw,

m and m′ are the multiplication maps, and f, f ′ are induced from the swap map

LGs × LGsw −→ LGsw × LGs, (g1, g2) 7−→ (g2, θ(g1)).

Thus we have

Fw = (qw)∗ ◦ p!w(ωIw\LGw/Iw) = (qw ◦m)∗(p
′)!(ωIw\LGs×IwLGsw/Iw)

= (qw ◦m)∗(p
′′)!(ωIw\LGsw×IwLGθ(s)/Iw

).

If ℓ(w′) = ℓ(w), then the multiplication map gives an isomorphism LGsw ×Iw LGθ(s)
∼=

LGw′ . Thus we have

Fw = (qw ◦m)∗(p
′′)!(ωIw\LGsw×IwLGθ(s)/Iw

) = (qw′)∗ ◦ p!w′(ωIw\LGw′/Iw) = Fw′ .

Now we consider the case where ℓ(w′) < ℓ(w). Consider the diagram:

X1
Adθ(Iw)

LGsw×IwLGθ(s)

Adθ(Iw)
X2

Adθ(Iw)

LGsw
Adθ(Iw)

LGsw,θ(s)

Adθ(Iw)
LGw′

Adθ(Iw) ,

ı

p1

ȷ

p2

ı′ ȷ′

where:

LGsw,θ(s) =

{
LGw′ if w′ > sw;

LGw′ ⊔ LGsw if w′ < sw,

ȷ is an open embedding, and ı is the closed embedding from its complement. The projection

p1 :
X1

Adθ(Iw) →
LGsw

Adθ(Iw) is an (A1\{0})-fibration and p2 :
X2

Adθ(Iw) →
LGw′

Adθ(Iw) is anA1-fibration.

Thus, we have:
p1,∗ω X1

Adθ(Iw)

≃ ω LGsw
Adθ(Iw)

[1]⊕ ω LGsw
Adθ(Iw)

[2]

and
p2,∗ω X2

Adθ(Iw)

≃ ω LGw′
Adθ(Iw)

[2].

By applying the localization sequence to the closed embedding of X1
Adθ(Iw) in

LGw
Adθ(Iw) gives:

ı∗ı
!ω LGw

Adθ(Iw)
−→ ω LGw

Adθ(Iw)
−→ ȷ∗ ◦ ȷ!ωω LGw

Adθ(Iw)

.
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We pushforward via pw to obtain:

pw,∗ı∗ı
!ω LGw

Adθ(Iw)
pw,∗ω LGw

Adθ(Iw)
pw,∗ȷ∗ ◦ ȷ!ω LGw

Adθ(Iw)

pṡẇ,∗ ◦ p1,∗ω X1
Adθ(Iw)

Fw pẇ′,∗ ◦ p2,∗ω X2
Adθ(Iw)

Fṡẇ[2]⊕Fṡẇ[1] Fw Fẇ′ [2]

≃ ≃ ≃

≃ ≃ ≃

This finishes the proof. □

Lemma 4.11. For every O ∈ W̆ �θ W̆ we have the following factorization:

Tr(Θ,H)⪰O D
(

LG≽O
Adθ(LG)

)

Tr(Θ,H) D
(

LG
Adθ(LG)

)
F

(i≽O)! .

Proof. By [3, Lemma 3.1.7], we need to check that the following lax-commutative diagram
commutes:

Tr(Θ,H)⪰O D
(

LG≽O
Adθ(LG)

)

Tr(Θ,H) D
(

LG
Adθ(LG)

)
FO

πTr,O

F

(i≽O)! .

Concretely, given F ∈ Tr(Θ,H) we need to check that (i≽O)
!(F ) ∈ Tr(Θ,H)⪰O, that is

(i≽O)!◦(i≽O)!(F ) ∈ Tr(Θ,H). By (1.31) this is equivalent to checking that (pO)∗◦p∗O(F ) ∈
Tr(Θ,H).

For O′ ̸≽ O, let jO′,O :
LGO′

Adθ(LG) ↪→ ZO
Adθ(LG) be the qcqs open stratum and kO′,O :

ZO\O′

Adθ(LG) :=
ZO\LGO′
Adθ(LG) ↪→ ZO

Adθ(LG) its fp-closed complement. For any F ∈ D
(

ZO
Adθ(LG)

)
we

have a cofiber-fiber sequence

(kO′,O)∗ ◦ (kO′,O)
!(F ) −→ F −→ (ȷO′,O)∗ ◦ (ȷO′,O)

!(F ).

Since
ZO\O′

Adθ(LG) =
⊔

O′′ ̸≽OO′′ ̸=O′

LGO′′
Adθ(LG) , by induction it is enough to check that:

(4.19) (iO′)∗ ◦ (iO′)∗(F ) and (iO′)! ◦ (iO′)∗(F ) ∈ Tr(Θ,H), for everyO′ ̸≽ O.

Recall that F ∈ Tr(Θ,H) if it can be written as a colimit of q∗ ◦ p!(G ) where G ∈ H.
Moreover, we can write colimW̆ (fw)∗ ◦ f !

w(G )
∼−→ G , where fw : Iw\LG⩽w/Iw ↪→ X. Since

any sheaf on D(Iw\LG⩽w/Iw) is a colimit of ωIw\LGw′/Iw for w′ ⩽ w, it is enough to consider
G = Fw as defined in Lemma 4.10. Thus, we need to check that:

(4.20) (iO′)∗ ◦ i∗O′(Fw) and (iO′)! ◦ i∗O′(Fw) ∈ Tr(Θ,H), for everyO′ ̸≽ O and w ∈ W̆ .
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By Lemma 4.10, we can assume that w is of minimal length in its θ-conjugacy class Ow.
In this case, by §2.2.1 LGw is contained in a single Newton stratum of LG. Thus, qw factors
as the following Cartesian diagram:

LGw
Adθ(Iw)

LGOw
Adθ(Iw)

LG
Adθ(Iw)

LGOw
Adθ(LG)

LG
Adθ(LG)

ıĬw,Ow

q′Ow

ıĬOw

q

ıOw

.

Without loss of generality, we can assume that Ow ̸≽ O. Thus, we obtain:

(qw)∗ ◦ p!w(ωIw\LGw/Iw) ≃ (ıOw)∗ ◦ (q′Ow
)∗ ◦ (ıĬOw

)∗ ◦ (ıĬOw
)∗ ◦ (ıĬw,Ow

)∗ ◦ p!w(ωIw\LGw/Iw)

≃ (ıOw)∗ ◦ (ıOw)
∗ ◦ q∗ ◦ (ıĬOw

)∗ ◦ (ıĬw,Ow
)∗ ◦ p!w(ωIw\LGw/Iw)

≃ (ıOw)∗ ◦ (ıOw)
∗ ◦ (qw)∗ ◦ p!w(ωIw\LGw/Iw),

where we used Lemma 1.17 ((v)) for the base change isomorphism in the second line. A
similar computation gives (ıOw)! ◦ ı∗Ow

◦ (qw)∗ ◦ p!w(ωIw\LGw/Iw) ≃ (qw)∗ ◦ p!w(ωIw\LGw/Iw),
because q, qw, and q′Ow

are ind-fp proper. So (4.20) trivially holds when w is of minimal
length. This finishes the proof.

□

4.6. Proof of Theorem 4.3. (1) By Lemmas 4.4, 4.5, and 4.6 the augmented simplicial
object H• : ∆op

+ → LincatE satisfies the Beck–Chevalley condition, so Proposition 4.1

implies that Tr(Θ,H)→ D
(

Ğ
Adθ(Ğ)

)
is fully faithful. The last claim is clear.

(2) By Proposition 4.1, Tr(Θ,H) is generated under colimits by the essential image of
CH. Notice that the definition of Tr(Θ,H)⪰O is equivalent to the formulations in (4.13)
and (4.14). By Lemma 4.9 and Lemma 4.11 the category Tr(Θ,H)⪰O satisfy the conditions

of Proposition 4.8. Thus, we get an open W̆ �θ W̆ -stratification of Tr(Θ,H).
(3) The claim follows from Lemma 4.10 and a similar argument as in the proof of Lemma

4.9.

Appendix A. Stratifications of categories

A.1. Recollement. Let X be a presentable stable ∞-category. We say a subcategory
ȷ : U ↪→ X is open, resp. ı : Z ↪→ X is closed, if these inclusions extend to diagrams:

U X
ȷ

ȷRR

ȷR , resp. Z Xı

ıL

ıR

.

We follow the convention of [25, §A.1.1] for the terminology of closed and open (see loc. cit.
for a remark on how this compares to the different convention of [3]). Also, notice that in
[1, §3.1] a closed subcategory is referred to as admissible.

Let OpX ↪→ (PrL)/X (resp. ClX ) be the full subcategory of open (resp. closed) subcate-
gories of X . A recollement is a diagram:

(A.1) U X Z
ȷ

ȷRR

ȷR

ıL

ıR

ı ,
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such that Im ȷ = ker ıL, Im ı = ker ȷR, and Im ȷRR = ker ıR. In the diagram (A.1) either
the sub-diagram between U and X , or Z and X , determines the rest of the diagram. More
precisely, we have:

Proposition A.1. [1, Proposition 3.4] Let ı : Y ↪→ X denote a subcategory of X , then:
(1) if Y is open then one has a recollement:

(A.2) Y X Y⊥
ı

ıRR

ıR

ı⊥,L

ı⊥,R

ı⊥ ,

where Y⊥ := {x ∈ X | MapX (ı(y), x) = 0, for all y ∈ Y}.
(2) if Y is closed, then one has a recollement:

(A.3) Y X ⊥Yı

ıR

ıL

⊥ı
R

⊥ı
RR

⊥ı

,

where ⊥Y := {x ∈ X | MapX (x, ı(y)) = 0, for all y ∈ Y}.

Remark A.2. Given a continuous functor F : Z → X between presentable stable ∞-
categories, then F admits a right adjoint FR. Moreover, if F preserves compact objects,
then FR preserves filtered colimits. Thus, by the adjoint functor theorem, FR admits a
further right adjoint FR,R.

A.2. Stratification of presentable stable ∞-categories. Let P be a partially ordered
set (in short, poset). For some results, we need to assume that P is down-finite, i.e. for
every p ∈ P the subset P⩽p ⊆ P is finite.

Definition A.3. [3, Definition 1.3.2] An open P-stratification of X is a functor

U• : P −→ OpX , p 7−→ Up X

ȷp

ȷRR
p

ȷRp

satisfying:

(i) colimp∈P Up ≃ X (in PrL);

(ii) for every p, q ∈ P one has a factorization:

Up ∩ Uq Uq

Up X ,ȷp

ȷRq ,

where Up ∩ Uq is the pullback of Up
ȷp→ X ȷq← Uq;

(iii) Up ∩ Uq =
⋃

(⩽p)∩(⩽q)
Ur := colim

P⩽p ∩P⩽q

Ur (in (PrL)/X ) for every p, q ∈ P.
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Definition A.4. A closed P-stratification of X is a (strict) functor:

Z• : P −→ ClX , p 7−→ Zp Xıp

ıLp

ıRp

satisfying:

(i) colimp∈PZp ≃ X (in PrL);

(ii) for every p, q one has a factorization:

Zp ∩ Zq Zq

Zp X ,ıp

ıLq

where Zp ∩ Zq is the pullback of Zp
ıp→ X ıq← Zq;

(iii) Zp ∩ Zq =
⋃

(⩽p)∩(⩽q)
Zr := colim

P⩽p ∩P⩽q

Zr (in (PrR)/X ).

Notice that condition (iii) for the open stratification considers the colimit in PrL whereas
for the closed stratification one takes the colimit in PrR. When P is totally ordered, condi-
tions (ii) and (iii) are automatic, thus Definition A.4 recovers [1, Definition 3.6].

Remark A.5. Definition A.4 should be seem as a categorical analogue of the decomposition
of a scheme (or any more general geometric object) X ≃ ∪IZi where each Zi ↪→ X is closed
and Zi ∩ Zj = ∪k⩽i and k⩽jZk. Definition A.3 is the categorical analogue of decomposing

X ≃ ∪IopUi where each Ui ↪→ X is open and Ui ∩Uj = ∪k⩾i and k⩾jUk. Notice that in nice

situations we can pass from the data of {Zi}i∈I to {Ui}i∈Iop , via Ui := X\Zi and they both
are equivalent to giving a decomposition X ≃ ⊔IXi, where each Xi is locally closed with
Xi = ⊔j⩽iXj (the categorical version is given in §A.5). Notice that this is a more structure
situation that simply saying that for each i ∈ I one has an open-closed decomposition
Zi ↪→ X ←↩ Ui of X.

A.3. Open-closed correspondence. We start by explaining a construction that allows
us to pass from closed to open stratifications and vice-versa.

Let Z• : P→ ClX be a closed stratification. For each p ∈ P let R(Z)p be defined by the
following recollement diagram:

R(Z)p X
⋃
q ̸⩾p
Zq

ȷp

ȷRR
p

ȷRp

ıLp

ıRp

ıp ,

where we claim that ∪q ̸⩾pZq = colim
P̸⩾p

Zq ∈ ClX . Indeed, via the equivalence PrR ≃ (PrL)op

we have:

colim
P̸⩾p

Zq
∼−→ lim

(P̸⩾p)op
Zq

where the limit is computed in PrL, equivalently in Pr (cf. [3, Observation 2.3.9]).
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Concretely, by Proposition A.1 we have R(Z)p ≃ (
⋃

q ̸⩾pZq)
⊥ ≃

⋂
q ̸⩾pZ⊥q . Given p1 → p2,

notice that the diagram:

Zp1 Zp2

X X

ıp1,p2

ıp1 ıp2

idX

is horizontally left and right adjointable. Thus, the following commutative diagram defines
ȷp2,p1 : ⋂

q ̸⩾p1
Z⊥q X

⋃
q ̸⩾p1
Zq

⋂
q ̸⩾p2
Z⊥q X

⋃
q ̸⩾p2
Zq

ȷp1
ıL̸⩾p1

ȷp2,p1

ȷp2

idX

ıL̸⩾p2

(ı ̸⩾p1 ,̸⩾p2
)L .

Moreover, notice that (ȷp2,p1)
R := (ȷp1)

R ◦ ȷp2 gives a right adjoint to ȷp2,p1 and that
(ȷp2,p1)

RR := (ȷp1)
R ◦ (ȷp2)RR is a further right adjoint. Thus, we obtain a functor:

R(Z)• : Pop −→ OpX .

Similarly, given U• : P → OpX an open stratification, we can define Ř(U)p via the
recollement diagram:

⋃
q ̸⩾p
Uq X Ř(U)p

ȷp

ȷRR
p

ȷRp

ıLp

ıRp

ıp .

The same argument as above gives that we have a functor Ř(U)• : Pop → ClX .

Proposition A.6. Let P be a down-finite poset and X a presentable stable ∞-category.
The following data are equivalent:

(1) a closed P-stratification Z• : P→ X ;
(2) an open Pop-stratification U• : Pop → X .

Proof. We prove (1) ⇒ (2), and the direction (2) ⇒ (1) is similar. We will prove that
R(Z)• : Pop → OpX is an open stratification. First notice that one has:

X/ colim
Pop

R(Z)• ≃ colim
p∈Pop

⋃
q ̸⩾p
Zq ≃ 0

since the indexing set P ̸⩾p vanishes for p ∈ Pop a maximal element, which exists if P is
down-finite.

We verify conditions (ii) and (iii) from Definition A.3.
Condition (iii) follows directly from the computation:

colim
q∈(P⩽p1

)op∩(P⩽p2
)op

R(Z)q ≃ lim
q∈P⩽p1

∩P⩽p2

⋂
r∈P ̸⩾q

Z⊥q ≃
⋂

r∈P̸⩾p1
∩P̸⩾p2

Z⊥r ≃ R(Z)p1 ∩ R(Z)p2 .
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For (ii), notice that the diagram on the left determines the diagram on the right by consid-
ering quotients inside of X :⋃

(̸⩾p1)∩(̸⩾p2)
Zr

⋃
(̸⩾p2)
Zr

⋃
( ̸⩾p1)
Zr X

(ı ̸⩾p1∩̸⩾p2, ̸⩾p2
)L

(ı ̸⩾p1∩⩾̸p2 ,̸⩾p1
)L

(ı ̸⩾p1
)L

(ı̸⩾p2
)L ⇝

R(Z)p1 ∩ R(Z)p2 R(Z)p2

R(Z)p1 X

ȷp1∩p2,p2

ȷp1∩p2,p1 ȷp2

ȷp1

.

By passing to the right adjoint on the horizontal arrows on both diagrams we obtain lax-
commutative diagrams:⋃

(̸⩾p1)∩(̸⩾p2)
Zr

⋃
(̸⩾p2)
Zr

⋃
( ̸⩾p1)
Zr X

ı̸⩾p1∩⩾̸p2 ,̸⩾p2

(ı ̸⩾p1∩⩾̸p2 ,̸⩾p1
)L

ı̸⩾p1

(ı̸⩾p2
)L ⇝

R(Z)p1 ∩ R(Z)p2 R(Z)p2

R(Z)p1 X

ȷp1∩p2,p1

(ȷp1∩p2,p2 )
R

ȷp2

(ȷp1 )
R

,

where the double arrow specifies the not necessarily invertible 2-morphism. By a closed
variant of [3, Lemma 3.4.5] the left diagram actually commutes, which implies that the
right diagram also commutes. □

A.4. Glueing diagrams.

A.4.1. Open variant. Let U• : P→ OpX be an open stratification of X . For each p ∈ P we
define the pth stratum Xp by the following recollement diagram:

colim
r∈P̸⩾q

Ur Up Xp

ȷL̸⩾q,q

ȷR̸⩾q,q

ȷ̸⩾q,q

ı̊Lp

ı̊Rp

ı̊p .

We then define:

Φp : X
ȷRp−→ Up

ı̊Lp−→ Xp, and ρ p : Xp
ı̊p−→ Up

ȷRR
p−→ X ,

which give an adjunction (Φp, ρ
p). For each p→ q in P we define the open glueing functor

to be:

(A.4) Γ̊p
q : Xp X Xq

ρp Φq
.

Notice that for each pair of composable arrows p → q → r in P we obtain a natural
morphism: Γ̊p

r ⇒ Γ̊q
r ◦ Γ̊p

q . These assemble into a left-lax P-module (see [3, §A.1] for a
precise definition):

(A.5) P PrL.G̊
l.lax

We refer to (A.5) as the open glueing diagram.
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A.4.2. Closed variant. Let Z• : P → ClX be a closed stratification of X . Following [3,
Definition 1.3.5] we pose:

Definition A.7. For each p ∈ P the pth stratum Xp of Z• is defined by the following
recollement diagram:

Xp Zp
⋃
P̸⩾p

Zr

πL
p

πR
p

πp

ıL̸⩾p,p

ıR̸⩾p,p

ı ̸⩾p,p ,

where
⋃
P̸⩾p

Zr := colim
r∈P̸⩾p

Zr ≃ lim
r∈(P̸⩾p)op

Zr, where the limit is taken in PrL with respect to

ıLp,q : Zq → Zp for p→ q in P.

Now we define:

Ψp : X
ıLp−→ Zp

πp−→ Xp, and νp : Xp

πR
p−→ Zp

ıp−→ X ,
which give an adjunction (Ψp, νp). For each p→ q we define the closed glueing functor :

Γp
q : Xp X Xq.

Ψp νq

Notice that for each composable pair of arrows p → q → r, the counit of the adjunction
(Ψq, ν

q) gives a natural morphism Γq
p ◦ Γr

q ⇒ Γr
p.

Remark A.8. Notice that if the bottom line composition vanishes, then one has a factor-
ization: ⋃

P⩽p,⩽q

Zr/
⋃

P⩽p,⩽q,≥p

Zr Xq

⋃
P̸⩾p,⩽q

Zr
⋃

P⩽p,⩽q

Zr Zq

⋃
P̸⩾p

Zr Zp X

πq

ıp

ıRq

,

here we abbreviated P(⩽p)∩(⩽q) = P⩽p,⩽q and similarly for other subscripts. Notice that
if p ̸⩽ q then P⩽p,⩽q = P⩽p,⩽q,⩾p, so

⋃
P⩽p,⩽q

Zr/
⋃

P⩽p,⩽q,⩾p

Zr ≃ 0 and the composite νq ◦ ıp

vanishes. In particular, Γp
q also vanishes. The open glueing functors have a similar property,

namely Γ̊p
q vanishes whenever q ̸⩽ p.

The glueing functors assemble into a right-lax Pop-module:

(A.6) Pop PrL.G
r.lax

We refer to (A.6) as the closed glueing diagram.
The main result of [3] is that one can reconstruct an (open/closed) stratification from an

(open/closed) glueing diagram.

Theorem A.9. [3, Theorem A (1) and (2)] Assume that P is down-finite. Let X be a
presentable stable ∞-category.
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(1) The data of an open P-stratification of X is equivalent to the data of (A.5). Moreover,
one has an equivalence:

X ≃−→ lim
sd(P)

G op(X ),

where sd(P) is the subdivision poset associated to P (see [3, Definition A.4.2]).

(2) The data of a closed P-stratification of X is equivalent to the data of (A.6). Moreover,
one has an equivalence:

colim
sd(P)

G (X ) ∼−→ X .

Remark A.10. Let Z• : P→ X be a closed stratification and R(Z)• : Pop → X the corre-
sponding open stratification constructed in §A.3. By [3, §1.10] (see §3.2.4 for an example)
one also has a reflected open glueing diagram associated to R(Z)•:

Pop PrL.
ˇ̊

G
r.lax

.

When P is down-finite, one has equivalences:

colim
sd(Pop)op

ˇ̊
G (X ) ≃−→ X ≃← colim

sd(P)
G (X ).

In other words, the glueing of X given by its closed stratification is equivalent to the reflected
glueing given by the corresponding open stratification.

For clarity, we summarize the results of this appendix:

(cl. strat. Z• : P→ X ) (op. strat. U• : Pop → X )

(
G : Pop →

r.lax
PrL

) (
G̊ : Pop →

l.lax
PrL

)

op.-cl. constr.

cl. glueing
refl. op. glueing

op. glueing

Figure 1. Dependence of decomposition notions.
In the above diagram, the dashed arrows are equivalences whenever P is down-finite,

whereas the dotted arrow is an equivalence when Pop is down-finite. One could conceive
other constructions to complete the above diagram, we leave that to the reader.

A.5. Semi-orthogonal decomposition. Let X be a presentable stable ∞-category. By
definition, a P-indexed semi-orthogonal decomposition of X is a right lax functor:

X• : P −→
r.lax

PrL

satisfying:

(i) for every q ̸⩽ p one has X⊥p ↪→ Xq;

(ii) colimsd(P)Xp
≃→ X (in PrR).

Both conditions above have very concrete descriptions. Condition (i) is equivalent to saying
that for any xp ∈ Xp and xq ∈ Xq we have: MapX (Ψ

q(xq),Ψ
p(xp)) = 0 for q ̸⩽ p. Condition

(ii) is equivalent to requiring that X is the smallest stable subcategory of X containing the
essential image of Ψp : Xp ↪→ X for all p ∈ P.

The following is a consequence of Theorem A.9.
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Corollary A.11. Assume that P is down-finite. For X a presentable stable ∞-category,
the following data are equivalent:

(1) a closed stratification Z• : P→ ClX ;

(2) an open stratification U• : Pop → OpX ;

(3) a semi-orthogonal decomposition X• : P →
r.lax

(PrL)/X .

Following the arguments in [3, §7], one obtains analogues of all the constructions and
results in the appendix for X an idempotent complete, i.e. its underlying homotopy category
is idempotent complete, (small) stable ∞-category.

Remark A.12. When P is totally ordered, the equivalence of (1) and (3) in the version of
Corollary A.11 for idempotent complete small stable ∞-categories recovers [1, Proposition
3.8]. When P is not totally ordered [1, Definition 3.6] considers a semi-orthogonal decom-
position the data of Z : P→ ClX satisfying only condition (i) of Definition A.4. We stress
that for our applications the correct notion is the one considered in Corollary A.11.
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